Эффективный источник питания асинхронного двигателя

Однофазный асинхронный двигатель: схема подключения с пусковой обмоткой и конденсаторным запуском — чем отличаются и как их реализовать на практике

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

  • С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем
    • Как состояние подшипников влияет на работу двигателя
    • Что надо учитывать в конструкции статорных обмоток и как их подготовить
  • Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице
  • Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки
  • Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии
  • Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Самый экономичный способ управления двигателями – преобразователь частоты

В промышленности свыше 60% электроэнергии потребляется асинхронными электроприводами – в насосных, компрессорных, вентиляционных и других установках. Это наиболее простой, а потому дешевый и надежный тип двигателя.

Технологический процесс различных производств в промышленности требует гибкого изменения частоты вращения каких-либо исполнительных механизмов. Благодаря бурному развитию электронной и вычислительной техники, а также стремлению снизить потери электроэнергии появились устройства для экономного управления электродвигателями различного типа. В этой статье как раз и поговорим о том, как обеспечить максимально эффективное управление электроприводом. Работая в компании «Первый инженер» (группа компаний ЛАНИТ), я вижу, что наши заказчики всё больше внимания уделяют энергоэффективности

Большая часть электрической энергии, потребляемой производственными и технологическими установками, используется для выполнения какой-либо механической работы. Для приведения в движение рабочих органов различных производственных и технологических механизмов преимущественно используются асинхронные электрические двигатели с короткозамкнутым ротором (в дальнейшем именно о данном типе электродвигателя и будем вести повествование). Сам электродвигатель, его система управления и механическое устройство, передающее движение от вала двигателя к производственному механизму, образуют систему электрического привода.

Наличие минимальных потерь электроэнергии в обмотках за счет регулирования частоты вращения двигателя, возможность плавного пуска за счет равномерного увеличения частоты и напряжения — это основные постулаты эффективного управления электродвигателями.

Ведь ранее существовали и до сих пор существуют такие способы управления двигателем, как:

  • реостатное регулирование частоты путем введения дополнительных активных сопротивлений в цепи обмоток двигателя, последовательно закорачиваемых контакторами;
  • изменение напряжения на зажимах статора, при этом частота такого напряжения постоянна и равна частоте промышленной сети переменного тока;
  • ступенчатое регулирование путем изменения числа пар полюсов статорной обмотки.

Но эти и другие способы регулирования частоты несут с собой главный недостаток — значительные потери электрической энергии, а ступенчатое регулирование по определению является недостаточно гибким способом.

Потери неизбежны?

Остановимся более подробно на электрических потерях, возникающих в асинхронном электродвигателе.

Работа электрического привода характеризуется целым рядом электрических и механических величин.

К электрическим величинам относятся:

  • напряжение сети,
  • ток электродвигателя,
  • магнитный поток,
  • электродвижущая сила (ЭДС).

Основными механическими величинами являются:

  • частота вращения n (об/мин),
  • вращающийся момент M (Н•м) двигателя,
  • механическая мощность электродвигателя P (Вт), определяемая произведением момента на частоту вращения: P=(M•n)/(9,55).

Для обозначения скорости вращательного движения наряду с частотой вращения n используется и другая известная из физики величина — угловая скорость ω, которая выражается в радианах за секунду (рад/с). Между угловой скоростью ω и частотой вращения n существует следующая связь:

при учете которой формула приобретает вид:

Зависимость вращающего момента двигателя M от частоты вращения его ротора n называется механической характеристикой электродвигателя. Отметим, что при работе асинхронной машины со статора на ротор передается через воздушный зазор с помощью электромагнитного поля так называемая электромагнитная мощность:

Часть этой мощности передается на вал ротора в виде механической мощности согласно выражению (2), а остальная часть выделяется в виде потерь в активных сопротивлениях всех трех фаз роторной цепи.

Эти потери, называемые электрическими, равны:

Таким образом, электрические потери определяются квадратом тока, проходящего по обмоткам.

Они в сильной степени определяются нагрузкой асинхронного двигателя. Все другие виды потерь, кроме электрических, изменяются с нагрузкой менее существенно.

Поэтому рассмотрим, как изменяются электрические потери асинхронного двигателя при регулировании частоты вращения.

Читайте также:  Сверхэкономичный нагреватель воды своими руками

Электрические потери непосредственно в обмотке ротора электродвигателя выделяются в виде тепла внутри машины и потому определяют ее нагрев. Очевидно, чем больше электрические потери в цепи ротора, тем меньше КПД двигателя, тем менее экономична его работа.

Учитывая, что потери в статоре примерно пропорциональны потерям в роторе, еще более понятно стремление уменьшить электрические потери в роторе. Тот способ регулирования частоты вращения двигателя является экономичным, при котором электрические потери в роторе относительно невелики.

Из анализа выражений следует, что самый экономичный способ управления двигателями заключается в частоте вращения ротора, близкой к синхронной.

Частотно-регулируемые приводы

В обиход различных сфер промышленности, которые используют насосное, вентиляционное оборудование, конвейерные установки, объекты генерации (ТЭЦ, ГРЭС и т.п.) и др. вошли такие установки, как частотно-регулируемые приводы (ЧРП), также называемые преобразователями частоты (ПЧ). Данные установки и позволяют изменять частоту и амплитуду трехфазного напряжения, поступающего на электродвигатель, за счет чего и достигается гибкое изменение режимов работы управляющих механизмов.

Высоковольтный частотно-регулируемый привод

Конструктив ЧРП

Приведем краткое описание существующих преобразователей частоты.

Конструктивно преобразователь состоит из функционально связанных блоков: блока входного трансформатора (шкаф трансформатора); многоуровневого инвертора (шкаф инвертора) и системы управления и защит с блоком ввода и отображения информации (шкаф управления и защит).

В шкафу входного трансформатора производится передача энергии от трехфазного источника питания входным многообмоточным трансформатором, который распределяет пониженное напряжение на многоуровневый инвертор.

Многоуровневый инвертор состоит из унифицированных ячеек – преобразователей. Количество ячеек определяется конкретным конструктивом и заводом-изготовителем. Каждая ячейка оснащена выпрямителем и фильтром звена постоянного тока с мостовым инвертором напряжения на современных IGBT транзисторах (биполярный транзистор с изолированным затвором). Первоначально выпрямляется входной переменный ток, а затем с помощью полупроводникового инвертора преобразуется в переменный ток с регулируемой частотой и напряжением.

Полученные источники управляемого переменного напряжения соединяются последовательно в звенья, формируя фазу напряжения. Построение выходной трехфазной системы питания асинхронного двигателя производится включением звеньев по схеме «ЗВЕЗДА».

Система управления защиты располагается в шкафу управления и защиты и представлена многофункциональным микропроцессорным блоком с системой питания от источника собственных нужд преобразователя, устройством ввода-вывода информации и первичными сенсорами электрических режимов работы преобразователя.

Потенциал экономии: считаем вместе

На основании данных, предоставленных компанией Mitsubishi Electric, оценим потенциал энергосбережения при внедрении преобразователей частоты.

Вначале посмотрим, как меняется мощность при различных режимах регулирования двигателя:

А теперь приведем пример расчета.

КПД электродвигателя: 96,5%;
КПД частотно-регулируемого привода: 97%;
Мощность на валу вентилятора при номинальном объеме: 1100 кВт;
Характеристика вентилятора: H=1,4 о.е. при Q=0;
Полное рабочее время за год: 8000 ч.

Режимы работы вентилятора согласно графику:

Из графика получаем следующие данные:

100% расхода воздуха – 20% времени работы за год;
70% расхода воздуха – 50% времени работы за год;
50% расхода воздуха – 30% времени работы за год.

Экономия между работой под номинальной нагрузкой и работой с возможностью регулирования скорости вращения двигателя (работа совместно с ЧРП) равна:

7 446 400 кВт*ч/год — 3 846 400 кВт*ч/год= 3 600 000 кВт*ч/год

Учтем тариф на электроэнергию равным — 1 кВт*ч / 5,5 руб. Стоит отметить, что стоимость взята по первой ценовой категории и усредненному значению для одного из промышленных предприятий Приморского края за 2019 г.

Получим экономию в денежном выражении:

3 600 000 кВт*ч/год*5,5 руб/кВт*ч= 19 800 000 руб/год

Практика реализации подобных проектов позволяет с учетом затрат на эксплуатацию и ремонты, а также стоимости самих преобразователей частоты добиться срока окупаемости в 3 года.

Как показывают цифры, в экономической целесообразности внедрения ЧРП сомневаться не приходится. Однако одной экономикой эффект от их внедрения не ограничивается. ЧРП осуществляют плавный пуск двигателя, значительно уменьшая его износ, но об этом я расскажу в следующий раз.

Асинхронный генератор: устройство и принцип работы

  1. Устройство
  2. Принцип работы
  3. Сфера применения
  4. Чем отличается от синхронного?
  5. Виды
  6. Схема подключения
  7. Как сделать своими руками?

Асинхронный генератор – это прибор, посредством работы которого удается обеспечить промышленное оборудование, а также бытовые устройства электроэнергией. Данный тип агрегатов отличается простотой эксплуатации и удобной конструкцией.

Устройство

Генератор имеет простую структуру. Основными элементами устройства являются:

  • ротор;
  • статор.

Первый представляет собой подвижную деталь, а второй элемент в процессе эксплуатации сохраняет свое положение. В агрегате не сразу удается заметить обмотки проволоки, для изготовления которой обычно задействуют медь. Однако обмотки есть, только выполнены они из алюминиевых стержней и отличаются улучшенными характеристиками.

Конструкция, образованная короткозамкнутыми обмотками, называется «беличья клетка».

Внутреннее пространство заполнено пластинами из стали, а сами стержни из алюминия впрессованы в пазы, предусмотренные в сердечнике подвижного элемента. На валу генератора расположен ротор, а сам он стоит на специальных подшипниках. Фиксацию элементов агрегата обеспечивают две крышки, зажимающие вал с двух сторон. Корпус выполнен из металлического материала. Некоторые модели дополнительно оснащены вентилятором для охлаждения устройства во время работы, а на корпусе располагаются ребра.

Преимуществом генераторов является возможность их использования в сети с напряжением как в 220 В, так и с более высокими показателями. Для правильного подключения агрегата необходимо выбрать подходящую схему.

Принцип работы

Главная задача генератора заключается в выработке электрической энергии посредством энергии механической:

  • ветровой;
  • гидравлической;
  • внутренней, преобразованной в механическую.

Когда ротор начинает вращаться, в его контуре образуются магнитные силовые линии. Они проходят через обмотки, предусмотренные в статоре, в результате чего возникает электродвижущая сила. Именно она является ответственной за появление тока в цепях. Происходит это за счет подключения к устройству активных нагрузок.

Важный момент, который следует учитывать для организации бесперебойной работы, заключается в отслеживании скорости вращения вала. Она должна быть больше по сравнению с частотой, с которой образуется переменный ток. Последний показатель задают полюса статора. Если говорить проще, то в процессе выработки электроэнергии требуется обеспечить несовпадение частот. Они должны отставать на величину скольжения ротора.

При вращении вала под воздействием внешнего импульса, полученного в результате задействования механической энергии, и остаточного магнетизма возникает собственная ЭДС устройства. В итоге оба поля – подвижное и неподвижное – взаимодействуют друг с другом в динамическом режиме.

Ток, полученный в АГ, имеет небольшие значения. Для повышения выходной мощности потребуется увеличение магнитной индукции.

Зачастую достичь этого помогают дополнительные статоры конденсаторов. Их подключают к выводам катушек и внимательно следят за показателями системы.

Сфера применения

Асинхронные генераторы пользуются популярностью, и среди преимуществ подобных станций выделяют:

  • устойчивость к перегрузкам и КЗ;
  • простую конструкцию;
  • небольшой процент нелинейных искажений;
  • стабильную работу за счет небольшого значения клирфактора;
  • стабилизацию напряжения на выходе.

При подключении генератор выделяет небольшой количество реактивного тепла, поэтому его конструкция не требует установки дополнительных охлаждающих устройств. Это позволяет выполнить надежную герметизацию внутренней полости агрегата для ее защиты от проникновения влаги, грязи или пыли.

За счет своих достоинств генераторы активно используются в качестве источников электричества в следующих сферах и областях:

  • транспортной;
  • промышленной;
  • бытовой;
  • сельскохозяйственной.

Также мощные агрегаты встречаются в автомастерских. Кроме того, их упрощенная конструкция позволяет использовать устройства в качестве источников электрической энергии. К ним подключают аппараты для сварки, а также с их помощью организуют подачу питания важным объектам здравоохранения.

Посредством работы генераторов такого типа удается в короткие сроки соорудить и запустить ветровые и гидроэлектростанции.

Таким образом, обеспечить себя энергией могут даже удаленные от центральных сетей поселки и хозяйства.

Чем отличается от синхронного?

Основным отличием генератора асинхронного типа от синхронного является измененная конструкция ротора. Во втором варианте ротор использует проволочные обмотки. Чтобы организовать вращательное движение вала и создать магнитную индукцию, агрегат задействует автономный источник питания, которым зачастую выступает генератор меньшей мощности. Его располагают параллельно той оси, на которой располагается ротор.

Плюс синхронного генератора заключается в образовании чистой электрической энергии. Кроме того, устройство без особого труда синхронизируется с другими подобными машинами, и это тоже различие.

Единственным недостатком считают восприимчивость к перегрузкам и КЗ. Дополнительно стоит отметить, что разница между двумя видами оборудования заключается и в цене. Синхронные агрегаты более дорогие по сравнению с устройствами асинхронного типа.

Что касается клирфактора, то у асинхронных агрегатов его показатель значительно ниже. Поэтому можно утверждать, что этот вид устройств вырабатывает чистый электрический ток без каких-либо загрязнений. За счет действия подобной машины удается обеспечить более надежную работу:

  • ИБП;
  • зарядных устройств;
  • телевизионных приемников нового поколения.

Запуск асинхронных моделей происходит быстро, однако требует увеличения пусковых токов, которые запускают вращение вала. Плюсом является то, что в процессе работы конструкция испытывает меньше реактивных нагрузок, за счет чего удалось улучшить показатели теплового режима. Кроме того, работа асинхронных генераторов более стабильная вне зависимости от того, с какой скоростью вращается подвижный элемент.

Существует несколько классификаций асинхронных генераторов. Они могут отличаться следующими факторами.

  • Типом ротора – вращающейся части конструкции. Сегодня выпускаемые агрегаты данного типа предусматривают в своей конструкции фазный или короткозамкнутый ротор. Первый оборудован индуктивной обмоткой, в качестве которой выступает изолированный провод. С его помощью и удается создать динамическое магнитное поле. Второй вариант – единая конструкция, имеющая цилиндрическую форму. Внутри нее расположены штыри, оборудованные двумя замыкающими кольцами.
  • Количеством рабочих фаз. Под ними подразумевают выходные или статорные обмотки, расположенные внутри устройства. Выходные при этом могут иметь одну фазу или три. Этот показатель определяет назначение генератора. Первый вариант доступен для эксплуатации при напряжении в 220 В, второй – 380 В.
  • Схемой включения. Выделяют несколько способов организации работы трехфазного генератора. Можно подключить катушки к устройству, применяя схему «звезда» или «треугольник». Также их можно разместить на полюсах неподвижного элемента – статора.

Дополнительно генераторы асинхронного типа классифицируют по наличию или отсутствию обмотки катушки самовозбуждения.

Схема подключения

Сегодня выпускают различные вариации асинхронного двигателя. Он может быть однофазным или иметь три фазы для подключения. В нем может быть предусмотрено несколько обмоток или выполнена модернизация конструкции ротора. Однако в любом случае схемы подключения устройства остаются неизменными.

Среди распространенных схем можно выделить следующие.

  • «Звезда». В этом случае необходимо взять концы обмоток статора и подключить их в одной точке. Способ подходит преимущественно для трехфазных генераторов, которые необходимо подсоединить к трехфазной линии по большему напряжению.

  • «Треугольник». Является следствием первого варианта, только подключение происходит последовательно. В результате получается, что конец первой обмотки соединяется с началом второй, конец второй – с началом третьей, и так далее. Плюс этого способа – в возможности образования максимальной мощности в процессе работы агрегата.

  • «Звезда-треугольник». Этот метод вобрал плюсы двух предыдущих. Он обеспечивает мягкий запуск и достижение большой мощности. Для подключения потребуется использование реле времени.

Примечательно, что многоскоростные генераторы тоже имеют свои способы подключения. В основном это комбинации схем «звезда» и «треугольник» в различной их модификации.

Каждый генератор подключается к системе посредством определенной схемы, которая определяет способ выработки электроэнергии. Любой из этих способов подразумевает рациональное размещение проводов обмоток неподвижного элемента между полюсами его сердечника, только при этом подключение этих проводов осуществляется по-разному.

Как сделать своими руками?

Для начала стоит уточнить, что с нуля создать асинхронную мобильную станцию не получится. Максимум, что можно сделать, – это изготовить ротор без переделки или модернизировать двигатель асинхронного типа в альтернативную конструкцию.

Для проведения работ по модернизации ротора достаточно запастись готовым статором от мотора и провести ряд экспериментов. Главная идея сборки самодельного генератора заключается в использовании неодимовых магнитов. С их помощью удастся обеспечить ротор необходимым количеством полюсов для выработки электрической энергии.

Посредством наклеивания магнитов на заготовку, которую предварительно необходимо посадить на вал, и соблюдения полярности и угла сдвига получится добиться нужного результата. Магнитов потребуется много, минимальное количество составляет 128 штук. Готовая конструкция ротора подгоняется к статору. При выполнении этой процедуры необходимо предусмотреть зазор между зубцами и магнитными полюсами ротора. Он должен быть минимальным.

Стоит отметить, что ввиду плоской поверхности магнитиков им потребуется шлифовка. Дополнительно элементы нужно будет обточить.

В процессе важно регулярно охлаждать конструкцию, чтобы предотвратить появление деформаций и утерю магнитных свойств. Если все сделано правильно, то генератор будет работать исправно.

В процессе создания асинхронного генератора может возникнуть только одна проблема. В домашних условиях трудно изготовить идеальную конструкцию ротора, поэтому если есть возможность воспользоваться токарным станком, то лучше ею не пренебрегать. Кроме того, на подгонку деталей и их доработку потребуется много времени.

Еще один вариант, с помощью которого можно получить генератор, – это преобразование асинхронного двигателя, используемого в автомобилях. Дополнительно следует приобрести электромагнит, мощность которого будет соответствовать требованиям по отношению к будущему оборудованию. Стоит отметить, что при поиске двигателя нужно учитывать, чтобы его мощность была на половину выше показателя, которого хочется добиться в генераторе.

Чтобы получить нужную конструкцию и организовать ее эффективную работу, потребуется приобрести 3 модели конденсаторов. Каждый элемент должен быть способен выдержать напряжение в 600 и более В.

Реактивная мощность генератора асинхронного типа имеет связь с емкостью конденсатора, поэтому вычислить ее можно по формуле. Стоит отметить, что при повышении нагрузки мощность генератора растет. Таким образом, чтобы добиться стабильного напряжения в сети, потребуется увеличить емкость конденсаторов.

Про принцип работы асинхронного генератора смотрите в следующем видео.

Чем отличается синхронный двигатель от асинхронного

Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).

Отличие – кратко простыми словами

Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вам электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателях.

В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.

У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.

Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.

У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.

Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

  1. Наружной установки.
  2. Встроенные.

Статор условно состоит из двух компонентов:

  1. Кожух.
  2. Сердечник с проводами.

Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.

Принцип работы

Сначала к обмоткам возбуждения подводится ток постоянно величины. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.
  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь эля этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.
Читайте также:  Электросамокат своими руками

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.

Рассмотрим, из чего состоит асинхронный двигатель:

  • сердечник;
  • вентилятор с корпусом;
  • подшипник;
  • коробка с клеммами;
  • тройная обмотка;
  • контактные кольца.

С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.

Простыми словами, принцип действия можно разложить на несколько составляющих:

  1. При подаче напряжения в статоре создается магнитное поле.
  2. В роторе появляется ток, взаимодействующий с ЭДС статора.
  3. Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

  • стиральных машинках;
  • вентиляторе;
  • вытяжке;
  • бетономешалках;
  • газонокосилках и т. д.

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

  • компрессоры;
  • вентиляция;
  • насосы;
  • задвижки автоматического типа;
  • краны и лебедки;
  • станки для обработки дерева и т. д.

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.

Трехфазный АИР 315S2 660В 160кВт 3000об/мин

Преимущества и недостатки

Электродвигатель асинхронного тип имеет слабые и сильные места, о которых необходимо помнить.

  1. Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
  2. Более низкая стоимость, по сравнению с синхронным аналогом.
  3. Возможность прямого пуска.
  4. Низкое потребление энергии, что делает двигатель более экономичным.
  5. Высокая степень надежности, благодаря упрощенной конструкции.
  6. Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
  7. Возможность применения при подключении к одной фазе.
  8. Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
  9. Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.
  1. Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
  2. Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
  3. Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
  4. Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
  5. Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
  6. Трудности регулирования устройств, которые приводятся в движение «синхронниками».
  7. Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
  8. При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
  9. Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

  1. Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
  2. Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
  3. В «синхроннике» предусмотрена обмотка возбуждения.
  4. Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
  5. У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
  6. «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
  7. СД нуждается в дополнительном источнике тока.
  8. «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
  9. Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.

Про реактивную мощность

Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.

Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.

Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.

Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.

Какой лучше

При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.

В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.

Сообщества › Гараж Мечты › Блог › Из личного опыта — жгу пеллеты для отопления

Решил поделиться 2-х месячным опытом эксплуатации пеллетного котла. Все котлы работают по одному принципу и отличаются наличием автоматики и автоподжига, GSM модулем для дистанционного управления, и конечно мощностью. Да их работа отлично описана как в ссылке, так и Гугл в помощь.

Работает данный твёрдотопливный котёл на пеллетах — гранулированных опилках.

Их можно делать самим, купив установку, добыв сырьё (опилки отдают даром везде, только забери), но поездив по производителям и увидев целые линии с сушкой, подогрев и т.д. в это верится с трудом. Решил не заморачиваться и просто покупаю готовые в мешках по 15 кг — такая расфасовка герметична, плюс в бункер их засыпать не составляет труда.

Данный котёл работает на любом виде твёрдого топлива размером 25х25х25 мм, то есть все, что просыпалось сквозь сетку бункера сгорит.
Иногда дотапливаю, в помощь к пеллетам, дровами в морозы.

Скажу сразу, пробовал топить и на обычных опилках и на стружке — котёл не работает нормально, опилки подвисают в бункере и он встаёт. Что бы этого не происходило, по теории, нужен дополнительный шнек для постоянного перемешивания опилок в бункере. Если есть желание за морочиться на это, то можно получить дармовое топливо (опилки даром, плюсуется погрузка-разгрузка и транспорт, хранение), но бункер однозначно надо увеличивать в несколько раз — опилки горят просто мгновенно.

Бункер себе я буду увеличивать в 2 раза, так как хочется большей автономности, и увеличение интервала между пополнением бункера. Главное требование — обеспечение герметичности бункера от подсоса воздуха для исключения противоогня из горелочной зоны. Это может произойти, когда топливо кончается, и огонь может пройти по шнеку в бункер и при наличии там достаточного количества кислорода может воспламенить остатки пеллет. Крышка бункера имеет резиновое уплотнение по кругу и всегда должна быть закрыта!

Трубу от котла вывел через стенку компрессорной (небольшое помещение планировал вытащить туда 2 компрессора, а то шумят уж больно сильно, буду как то компоновать их с котлом теперь), используя сэндвич-трубы.

В пред идущие зимы я топился от центрального отопления (на фотке видно часть старых труб), но в эту зиму цену подняли в несколько раз и было принято решение уйти на своё отопление. Да и покрасочная камера в скором времени потребует много тепла.

Котёл смонтирован, согласно инструкции

Были куплены трёхходовой термостат, расширительные бачки и даже поставлен термоаккумулятор расчётных объёмов, группа безопасности котла на 3 Атм.

В подачу и обратку врезал по термометру, дабы смотреть потери при отоплении, плюс на обратке стоит манометр — держу 2 Атм в системе.

Термоаккумулятор пришлось изолировать, а то получился один большой радиатор. Плюс на выходные и праздники включаю тэны (они заходят снизу термоаккумуляторя), чисто для поддержания температуры теплоносителя выше 0, дабы не разморозить систему, и то при условии, если не могу досыпать пеллеты.

Так как насос котла управляется мозгами котла и отключается вместе с ним, для нормальной работы системы на тэнах пришлось ставить ещё один насос на котловую линию, дабы и он не разморозился.

Изоляция термоаккумулятора дала приличный подъём теплоносителя, примерно 6-8 градусов.

Ну и собственно сам котёл в работе.
Блок управления — мозги.

Регулирует:
— ручная подача топлива;
— температуру при которой котёл выключается;
— скорость вращения вентилятора, нагнетающего воздух в камеру сгорания;
— время подачи топлива шнеком;
— интервал подачи топлива;
— можно задать время включения и выключения (3 режима);
— отключить принудительно вентилятор (режим работы на дровах без пеллет с открытым поддувалом);
— отключить принудительно подачу топлива (удобно на этом режиме искать нужный режим горения топлива, добавляя топливо в ручную;
— авто розжига у меня нет, если котёл потух нужно вмешиваться в работу самому.

По работе самого котла и вообще в принципе использования данного топлива
1. Проблем и заморочек особых нет, основное регулярно досыпать пеллеты

2. Нужно периодически чистить зольник (не верьте, если говорят раз в неделю, минимум раз в 2 дня), плюс надо добиться именно золы, недогоревшие гранулы свидетельствуют о не правильном режиме горения (я близок к этому, но пока есть проблемки)

3. теплообменник лучше чистить каждый день — это улучшает теплоотдачу от огня, зола отличный изолятор, а она очень хорошо налипает на все трубы и стенки в котле.

4. Пеллеты, как показала практика, лучше закупать летом и складировать под навесом. Зимой спрос на них большой, и бывают перебои с топливом.

5. Раз в неделю проверять шнековый подающий механизм, так требует инструкция по эксплуатации.

Вывод: Котлом доволен, работает он хорошо. При качественном топливе проблем не наблюдалось. Надо ещё улучшить теплоизоляцию помещения — это основные тепло потери и, как следствие, лишнее топливо.
Плюс увеличить его автономность увеличением бункера

Метки: пеллетный колёт, пеллеты, отопление гаража, насос, тэны

Комментарии 28

Здравствуйте … что посоветуете об такой горелке ?!

раз продают и вроде фирма известная должно работать
у нас котёл всё таки с наддувом и автоподачей принудительной, здесь за счёт тяги и веса пеллет всё работает

… ну да, тоже в доме газа нет, и даже на баллоны пропан — в зиму заправляют строго в определенном колличестве (притрушенная страна !), вот и думаю пеллеты купить — вот только цены заооблочные — а тут недавно попалась на маркете !
— а гидроаккумулятор для чего вообще ?

типо котёл гоняет по малому кругу всегда воду больше 60 градусов постоянно через как раз гидроаккум — малый круг, а уже в систему отбирается сколько надо и какой надо температуры

по пропану странно — у нас бери сколько угодно

… в сильный мороз — да ограничивают (две заправки, на всех не хватает ), очереди собираются, до драк доходит даже, люди катаются в соседние станицы … станица Старомышастовская наша именная, 25 км от Краснодара

беда.у нас проще конечно

сколько воды(теплоносителя) в системе?

расчётно 2000 л

Очень круто описано!

не освсем ориентируюсь в ваших тарифах и ценах соответственно.
в целом выгоднее чем гос централизованое гасоснабжение или нет?

у нас вышло дешевле, чем топится от центрального отопления
свой газ не провести, иначе бы конечно сидели на газе

то есть не смотря на то что газ дороже выбрали бы газ, если бы была возможность?

у меня частный дом топится 2-мя котлами на газу, стоимость по газу выходит значительно меньше чем на пеллетах.
Это я вас сейчас, как человек столкнувшийся с этим говорю.
Для сравнения дом 200 м2, за газ с готовкой отдают в месяц вроде 6000 рублей, если даже интерполировать по площадям, взять в условие худшую теплоизоляцию, думаю до 30000 ни как не дойдём

плюс не забываем тарифы для физ лиц и юрлиц, они разняться и прилично

ах…неть, всегда был уверен что на газу в любом случае дороже…
Хотя у вас навеное дешевле тарифы на газ в отличие от наших

Если верить всем форумам, дешевле газа могут быть только дрова, причём срубленные лично, притащенные на своём горбу, нарубленные, и подкидываемые лично в котёл.
Причём всё это надо делать между работой, семьёй и отдыхом.

Отвечу сразу всем
Два помещения топлю в разных зданиях:
— первое 240 м2 потолки 3,5 м, отдельно стоящее здание, ворота светятся, окна 6 шт, очень плохая теплоизоляция, зимой снег от центрального отопления, когда топились, не лежал в любые морозы
— второе 85 м2, потолки 5 м, находится внутри неотапливаемого цеха, глухое (только ворота)

Во втором цеху теплее на 7 градусов, чем в первом. Первый цех не успели утеплить до зимы. Дыры залотали только. Когда топились от центрального отопления было не важно, в цеху всегда + 12-14 было в любой мороз.

В прошлом году за тепло первого цеха выходило 22 в месяц. В этом году появился второй цех. Расчитывали на 25 за один и пропорционально 10 за второй. Не угадали! Новый владелец котельной дал расчет — 60 и 25 соответственно в месяц, плюс возможен пересчёт из-за морозов.

С газом сложно, хоть он и не далеко, но на круг только протяжка и проект под лям.

Так как хотелось автономности, пиролизный котел отмел. Остался только пеллетный.
Сами пеллеты покупаю 6-6,3 за кг, зима и сезон, так летом затарюсь. Бункер 90 кг — хватает при морозе -25 держать 6-7 часов днём в первом цеху от 3 до 7 в разных местах. При том же морозе во втором цеху теплее на 5-7 градусов.
Ночной режим в два раза экономичнее ставлю, того же объёма хватает на 10-12 часов.
Точнее не мерил, обычно тонна в неделю стабильно улетает.

Вот и расклад, отопление выходит в 25-30 килорублей, плюс доставка пеллет и пороки с закладкой и чисткой.
Система встала примерно в 300, с учётом создания новой системы отопления во втором цеху.

Как сделать пеллетный котел

Из всех водогрейных отопительных установок, сжигающих различные виды твердого топлива, самым совершенным по праву считается пеллетный котел. И неудивительно, ведь эффективность сжигания пеллет очень высока, а степень автоматизации агрегата позволяет не вмешиваться в его работу неделями, только бы хватало объема загрузочного бункера. Но все эти достоинства оборачиваются и другой стороной – приличной стоимостью оборудования, в число которого входит не только сам отопитель, но и топливный бункер со шнековым конвейером. Однако, есть возможность стать счастливым обладателем столь высокотехнологичного агрегата, заплатив за него вдвое дешевле. Для этого придется сделать пеллетный котел своими руками, эту тему мы и разберем в данном материале.

Устройство и принцип работы пеллетных котлов

Чтобы смонтировать самостоятельно подобную твердотопливную установку, нужно будет хорошо потрудиться, а для начала разобраться, как она работает и из чего состоит. Сердцем пеллетного агрегата является горелочное устройство, что выполняет практически все основные функции и связано с контроллером котла, действуя по его командам. Горелки, предназначенные для сжигания пеллет, бывают двух типов:

  • ретортные;
  • факельные.

Разница между ними заключается в следующем. Ретортная пеллетная горелка представляет собой чашу (реторту), наполняемую снизу топливом посредством шнека, а воздух в зону горения подается вентилятором через отверстия, расположенные по бокам чаши. При работе столб пламени направлен вверх, что должна учитывать конструкция котла.Факельное горелочное устройство – это труба, она же – камера сгорания, где с одного торца происходит шнековая подача пеллет, а из другого выходит мощный факел пламени, направленный горизонтально. Это достигается нагнетанием воздуха в камеру с той же стороны, что и топлива.

Читайте также:  Солнечная печь своими руками

Примечание. Горелки факельного типа применяются чаще ретортных, так как у последних случаются проблемы с подачей пеллет низкого качества. Для сборки котельной установки своими руками также предпочтительнее использование факельного горелочного устройства, ниже мы обоснуем почему.

В дальнейшем мы будем рассматривать работу агрегата с факельной горелкой, поскольку для нашей цели данная конструкция подходит лучше. Итак, камера сгорания в виде трубы находится внутри котла, а наружная часть горелки состоит из корпуса с подающим шнеком и вентилятором для нагнетания воздуха. Для функционирования электрического розжига и поддержания пламени в конструкцию также входит плата управления, фотодатчик и элемент накаливания. В верхней части корпуса находится патрубок топливоподачи.

Процесс происходит так: по команде контроллера шнек подает в камеру небольшое количество пеллет и останавливается. Включается элемент накаливания и одновременно с ним вентилятор, вызывая возгорание топлива. Появление устойчивого пламени фиксирует фотодатчик, и извещает об этом блок управления, а тот выключает элемент накаливания. Дальше начинается работа в обычном режиме, шнековый конвейер возобновляет подачу, а вентилятор нагнетает требуемое количество воздуха. По команде того же контроллера в горелку через патрубок насыпаются пеллеты, перемещаемые туда из загрузочного бункера внешним шнековым конвейером.

Примечание. Многие производители используют топливный бункер, закрепленный прямо над патрубком горелки, что позволяет пеллетам самостоятельно ссыпаться в него без дополнительного конвейера.

Теперь стоит рассмотреть устройство пеллетного котла в целом. Конструкция корпуса агрегата типична для всех твердотопливных установок, она представляет собой внутреннюю камеру из стали либо чугуна, заключенную во внешний кожух, заполненный водой, — водяную рубашку. Для отбора теплоты у дымовых газов конструкцией может быть предусмотрено 2 типа теплообменников:

  • жаротрубный;
  • водотрубный.

В водотрубном теплообменнике теплоноситель протекает через трубы, омываемые продуктами горения и передающие ему свое тепло. Но такое устройство нечасто встречается в твердотопливных котлах, обычно в них все наоборот: дымовые газы проходят сквозь трубы, отдавая энергию горения водяной рубашке, это и есть жаротрубный теплообменник. Чтобы работа котла была эффективной, теплообменник делается двух – или трехходовым. Это значит, что дымовые газы, проходя по жаровым трубам, дважды или трижды меняют свое направление на противоположное, делая 2 или 3 хода. Это позволяет отдать им максимум тепла водяной рубашке, а на выходе в дымоход получить температуру не более 150 ºС.

Рабочий процесс происходит так: горелка сжигает топливо и нагревает стенки камеры, а те прогревают теплоноситель. В свою очередь, продукты горения под воздействием естественной тяги и работы вентилятора проходят сквозь жаровые трубы, также отдавая теплоту водяной рубашке, и выбрасываются в дымоход. Интенсивность горения управляется контроллером по сигналу датчика температуры, погруженного в теплоноситель на выходе из агрегата. В том и заключается принцип работы пеллетных котлов, чтобы автоматически регулировать процесс сжигания и по необходимости увеличивать или уменьшать подачу топлива и воздуха в горелку.

Рекомендации по изготовлению котла

Первое, что следует сделать – это выбрать конструкцию агрегата. Здесь рекомендации следующие: не усложнять себе работу и подобрать устройство котла с учетом перспективы. Простыми словами, стоит отделить те элементы, что можно изготовить самостоятельно от других, которые придется приобрести. К последним относится горелочное устройство с набором автоматики.

Некоторые мастера-умельцы предлагают делать и горелку своими руками, но этот узел достаточно сложен, на него можно потратить массу времени и усилий, а в результате функционирование и расход пеллетного котла будут непредсказуемыми. Наверняка проще купить готовое изделие и поставить его в самодельный агрегат, но этот вопрос каждый решает для себя сам.

Чтобы подобрать конструкцию с учетом перспективы, нужно сделать ее универсальной. То есть, предлагается изготовить самодельный пеллетный котел по образу обычного твердотопливного агрегата, в котором есть возможность сжигать дрова и уголь. В сущности, теплообменные процессы, происходящие в обоих видах отопителей, идентичны, отличается лишь топливо и способ его сжигания, что показано на рисунке:

Итак, смело принимаем конструкцию традиционного твердотопливного котла с возможностью встраивания вместо загрузочной дверцы горелочного устройства на монтажной пластине. Это даст следующие преимущества:

  1. Поскольку изготовление пеллет пока не очень распространено в нашей стране и с топливом возможны перебои, то можно в любой момент снять пеллетную горелку и обогревать жилище с помощью дров или угля.
  2. Появится возможность использовать природный газ или солярку, поставив вместо пеллетной горелки газовую или дизельную.

Для топки котла лучше всего взять жаропрочную сталь толщиной 5 мм. Идеальный вариант – сталь, легированная хромом и молибденом (нержавейка), но она достаточно дорога, а для ее сваривания требуются особые навыки. По этой причине пеллетные котлы изготавливают из обычной углеродистой стали Ст20, а для кожуха водяной рубашки подойдет марка Ст3 толщиной 3 мм. Из такого же металла, что и камера сгорания, предпочтительнее взять заготовки для дверец и жаровые трубы для теплообменника. Колосниковую решетку вырезают из стали толщиной 10 мм или просто покупают готовую. Ну и для патрубков дымохода и теплоносителя понадобятся отрезки труб соответствующих диаметров.

Сборка производится посредством сварки, используя чертежи пеллетного котла. Особое внимание следует уделить ужесточению стенок водяной рубашки отрезками стальной полосы или уголка, а также съемной конструкции загрузочной дверцы. По окончании сварные швы нужно обязательно испытать на проницаемость и устранить недостатки.

Обвязка пеллетного котла

На практике монтаж пеллетного котла мало чем отличается от установки других твердотопливных «собратьев». Тут основная задача – правильно разместить все оборудование вместе с устройствами топливоподачи. Помните, что между блоками агрегатов требуется соблюдать проходы шириной не менее 700 мм, а перед лицевой панелью агрегата должно быть пространство 2 м.

Если при розжиге любого твердотопливного котла после остановки внутрь подавать теплоноситель из системы отопления, то на внутренних стенках топки образуется токсичный конденсат вперемешку с золой и сажей. Чтобы не допустить этого процесса, со временем разрушающего металл, при монтаже используются схемы обвязки пеллетных котлов со смесительным узлом.

Здесь главную роль играет трехходовой клапан, чьей задачей является не допустить попадания в рубашку агрегата теплоносителя из системы до тех пор, пока он не прогреется. В это время вода, побуждаемая насосом, циркулирует по малому кругу из подающего трубопровода прямо в обратный через трехходовой клапан. Как только она достигнет установленной температуры, клапан начнет подмешивать в обратку воду из системы, в конце концов перекрыв движение по малому кругу. При этом обвязка котла, работающего на пеллетах, должна предусматривать установку насоса на обратном, а не подающем трубопроводе. Не следует забывать и о группе безопасности с предохранительным клапаном и манометром, которую нужно ставить на выходном патрубке отопителя.

Заключение

Как показывает практика, самодельные котлы, работающие на пеллетах, по своему КПД уступают установкам заводского изготовления, зато превосходят их доступной стоимостью и надежностью. Последняя достигается толщиной конструктивных элементов из металла.

Как сделать пеллетный котел своими руками

Обогревательные установки, работающие на пеллетах, создают здоровую конкуренцию другим отопительным системам. В первую очередь из-за экологичности и экономичности. Даже несмотря на высокую стоимость такого оборудования, окупить оно сможет себя всего за два — три года. Но если сделать пеллетный котел своими руками, то экономия возрастает в несколько раз.

  • 1. Принцип работы и особенности устройства
  • 2. Преимущества и недостатки
  • 3. Самостоятельное изготовление
  • 4. Руководство по сборке
    • 4.1. Устройство горелки
    • 4.2. Корпус и теплообменник
    • 4.3. Описание топливника
    • 4.4. Бункер и шнековый механизм
    • 4.5. Установка котла

Устройство пеллетных котлов включает в себя шнековую конструкцию для подачи топлива и запальный механизм, обеспечивающий быстрое возгорание пеллетов. А также в систему входит вентилятор, который обеспечивает принудительную подачу воздуха. Это в значительной степени улучшает процесс горения.

Розжиг срабатывает лишь тогда, когда присутствующее в печи топливо хорошо разгорится. В автоматическом режиме пеллеты поступают в топку по мере необходимости. Горение приводит к образованию горячих газов, которые, проходя по дымоходу, отдают до 95% полезного тепла.

Поток воздуха регулируется автоматически исходя из оптимальных параметров работы котла. Человеческого участия во всём процессе работы не требуется. Управление при необходимости можно вести удалённо с пульта.

Важной особенностью является то, что топливо подаётся лишь до тех пор, пока не будет достигнута максимально требуемая температура. Возобновится его подача только после того, как температура упадёт до минимальных значений.

И в качестве преимуществ печей, работающих на пеллетах, можно выделить:

  • небольшой объём камеры сгорания;
  • основная масса тепла (до 70%) снимается в самой конструкции;
  • очень высокий показатель КПД, достигающий 96%;
  • если устройство оснащают дополнительным контуром водоснабжения, то полученное тепло можно использовать, например, для отопления помещений.

Существуют разные виды пеллетных котлов:

  1. 1. Котлы, работающие исключительно на древесных пеллетах.
  2. 2. Комбинированные модели, которые могут работать не только на пеллетах, но и при необходимости на дровах или угле.
  3. 3. Универсальные, способные работать практически на любом виде твёрдого топлива.

Ценовая политика различная. Так, наиболее дорогими вариантами будут универсальные печи/котлы, которые из-за способности использовать разные виды топлива имеют и более сложную конструкцию.

Составить грамотно схему и знать устройство агрегата недостаточно для полноценного взвешенного решения создать самодельную печь, работающую на прессованных отходах из древесины. Необходимо также учесть все достоинства и недостатки конструкции.

К основным положительным моментам можно отнести:

  • особенную экономичность, так как не требуется использование дров или угля;
  • высокий коэффициент полезного действия, выше можно встретить лишь у газовых печей;
  • высокую теплотворность пеллетов;
  • невысокую стоимость топлива;
  • полную безопасность в эксплуатации;
  • возможность полной автоматизации процесса;
  • отсутствие необходимости участия человека, так как автоматика контролирует и подачу топлива, и температурный режим;
  • долговечность и надёжность.

К преимуществам можно отнести и такую особенность печей на пеллетах, как отсутствие неприятных запахов и чёрного дыма, что делает конструкцию экологичной.

Но есть у подобных агрегатов и неприятные стороны, которые также нужно учесть при составлении схемы отопительного оборудования.

  • высокая стоимость комплектующих импортного производства для самостоятельной сборки печи;
  • ввиду того что производство древесных гранул не очень развито, появляется сложность с покупкой топлива;
  • для автоматизации процесса придётся дополнительно учесть расходы электроэнергии, так как всё оборудование автоматики работает на электричестве.

При остановке агрегата на время более 10 часов, необходимо проводить новую настройку.

Также придётся подумать и об источнике питания. Во избежание непредвиденных отключений электроэнергии лучше будет установить автономный генератор.

Когда стоит вопрос о выборе котла на пеллетах, стоит учитывать два важных фактора. Первый подразумевает использование уже готового заводского варианта. Но здесь придётся смириться с тем, что конструкция не будет приспособлена к индивидуальным условиям. И поэтому придётся подстраивать окружающую обстановку под него.

Совсем иначе обстоит дело с самодельными вариантами. Ведь пеллетный котёл своими руками можно делать, учитывая все нюансы конкретных условий. И, таким образом, создать агрегат, полностью соответствующий запросам.

Если смущает само топливо, то нелишним будет понять, что пеллеты являются продуктом переработанной древесины и сельскохозяйственных отходов с высокой эффективностью выработки тепла и экономической выгодой.

Не наносит такое топливо вреда и окружающей среде, поскольку:

  • отсутствует загрязнение воздуха;
  • не требует заготовки топлива, подразумевающую вырубку деревьев;
  • в испарениях полностью отсутствуют вредные вещества.

Но необходимо знать, что пеллеты придётся хранить в соответствии с определёнными правилами, поскольку они крайне легко воспламенимы, а это может вызывать пожар.

Стоит сказать и о долговечности таких установок. Ведь собранная своими руками модель из стали может служить без ремонта 15−20 лет. Если же в качестве материала использовать чугун, то эти цифры увеличиваются до 50 лет. А это практически вечное устройство, способное служить человеку безотказно многие годы.

Учитывая запросы и желания, конструкция пеллетных печей может быть как полностью автономной, без подключения к электросети, так и автоматизированной, с использованием систем, следящих за работой устройства.

И уже всё тщательно взвесив и обдумав, можно принимать решение, делать ли котел на пеллетах своими руками или всё же купить готовый экземпляр

При изготовлении пеллетных котлов своими руками нужно учитывать, что основная конструкция состоит из нескольких основных частей. Но вот каждую из этих частей предпочтительно делать отдельно от всего агрегата. Поэтому условно разбивают будущую печь на: горелку, корпус с теплообменником, топливник, шнековый механизм и бункер.

Исходя из этого можно приступать к созданию отдельных частей, которые могут иметь различные конструктивные особенности и чертежи. Всё это зависит от выбранной модели и индивидуальных требований.

Самым лучшим материалом для изготовления горелки является сталь и чугун. Эта часть печи вставляется непосредственно внутрь агрегата. А принцип работы и её технические характеристики могут отличаться в зависимости от множества параметров. Именно поэтому проектируют и собирают эту часть отдельно.

Чтобы получившаяся в процессе часть соответствовала всем нормам безопасности, придётся обратиться для проверки к специалисту. Ведь только компетентный в этой сфере человек способен качественно оценить надёжность и безопасность устройства, учитывая все нюансы специфики.

Рекомендуется оснастить самодельную горелку системой поджига, который может быть как ручным, так и автоматическим. Во втором варианте дополнительно используют вентилятор.

Выгодно здесь отличается от других прототипов факельная горелка. Она хоть и не имеет большой мощности, но благодаря незначительным размерам будет наилучшим вариантом для домашней печи.

Если именно эту часть пеллетного котла хочется купить из-за кажущейся сложности, то стоит прежде подумать, так как готовая заводская горелка обойдётся в сумму около 75 000 рублей. Хотя на цену могут влиять: производительность, тип поджига, размеры и используемые материалы. Поэтому цена может быть больше или меньше. Но если применить имеющиеся чертежи, то своими руками собрать подобную конструкцию будет значительно проще, чем может показаться.

Не стоит забывать и о том, что горелка должна соответствовать типу самого котла. Для создания чертежей можно обратиться к специалисту, который поможет составить проект с учётом всех нюансов.

Правильно собранная горелка способна служить 10−15 лет. Срок службы заводских аналогов достигает 20 лет.

В качестве материала для создания корпуса рекомендуется использовать чугун или шамотный кирпич, так как он устойчив к высоким температурам, перепадам и перегреву.

Теплообменник делается из стальных труб квадратной формы с толщиной стенки 4−6 мм. Но не стоит забывать, что к концам впоследствии будут привариваться трубы круглой формы.

В стенках спереди и сзади обязательно устанавливаются дверцы для технического обслуживания. А из инструментов понадобится сварочный аппарат и дрель.

В соответствии с чертежами теплообменник располагается внутри котла.

Топливник можно купить, а можно сделать и самостоятельно. Для этого понадобится жаропрочная сталь толщиной от 5 мм. Для дверок нужна такая же сталь, но толщиной от 6 мм. Колосниковую решётку делают тоже из жаропрочной стали, но толщиной от 1 см.

Топливник будет использоваться для подачи топлива в котёл. Его размер не должен быть очень большим, но достаточным, чтобы за один раз можно было загрузить пеллеты на два-три дня горения.

Из инструментов понадобятся: сварочный аппарат, болгарка, рулетка и дрель.

Чтобы сделать бункер для пеллет своими руками, понадобится металлический профиль квадратной формы и стальные листы.

Из профилей сваривается каркас необходимой формы и размера. Стальные листы вырезаются по шаблону и предварительно привариваются к каркасу. Теперь нужно сварить между собой нижнюю часть, сделав подобие воронки.

На нижнюю часть воронки приваривают металлические профили таким образом, чтобы свободно мог проходить стальной лист, вырезанный по размерам. Это будет шибер для управления подачей пеллет.

Здесь же приваривают своего рода коробку из тех же листов стали таким образом, чтобы получилась ёмкость, где впоследствии будут находиться пеллеты. С одной стороны вырезается отверстие круглой формы, куда приваривается кусок трубы под наклоном вверх.

Теперь останется лишь хорошо покрасить получившуюся конструкцию.

Шнек выбирают с таким условием, чтобы он мог достаточно свободно проходить в отверстие топливника. Так как он будет находиться в постоянном контакте с высокой температурой, то его так же, как и топливник, нужно подбирать из термостойкой стали. Размеры будут зависеть от индивидуальных параметров, которые учитываются при составлении схемы.

Для установки котла придётся оборудовать отдельное помещение и качественный дымоход. Оптимальным вариантом будет комната размером 2,4 на 2 метра. Стены предпочтительнее покрывать негорючим материалом, который хорошо моется. Ведь от топлива будет постоянная пыль и мусор, которые могут оседать на стенах.

В помещении для хранения пеллет придётся оборудовать место с поддонами, способными выдержать большой вес. Отдельным элементом будет выступать вентиляция, которую также необходимо сделать качественно.

Стены помещения не должны нагреваться выше 120 градусов. Поэтому если покрытие выполнено из негорючего материала, то расстояние до котла должно быть не менее двух сантиметров. От оштукатуренной стены котёл располагают на расстоянии от трех сантиметров и больше, а стены, ничем не покрытые, должны находиться от печи на расстоянии не менее 10 см.

Дымоход выполняется из нержавеющей стали толщиной 3−4 мм. Его высота должна быть от 6 метров, а сама конструкция выдерживать температуру до 600 градусов.

Пеллетную печь вполне можно сделать своими руками. Она не требует ремонта, экологична и проста в использовании. Правильно рассчитанный и смонтированный агрегат является безопасным и эффективным средством отопления. К тому же собственное исполнение отопительного устройства позволит сэкономить немалую сумму.

Ссылка на основную публикацию