Эффекты, связанные с катушкой отрицательной энергии (КОЭ)

Катушка индуктивности. Устройство и принцип работы.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: mu_0 = 4 pi cdot 10^<-7>medspacefrac <Гн>
  • mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: varepsilon i > 0, участок 3-4: varepsilon > 0, i w – круговая частота: w = 2 pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Энергия катушки индуктивности

Энергия катушки индуктивности (W) — это энергия магнитного поля, порождаемого электрическим током I, текущим по проводу данной катушки. Главная характеристика катушки — ее индуктивность L, то есть способность создавать магнитное поле при похождении по ее проводу электрического тока. У каждой катушки индуктивность и форма свои, поэтому и магнитное поле для каждой катушки будет отличаться величиной и направлением, хотя ток может быть абсолютно одинаковым.

В зависимости от геометрии конкретной катушки, от магнитных свойств среды внутри и около нее, – создаваемое пропускаемым током магнитное поле в каждой рассматриваемой точке будет обладать определенной индукцией B, как и величина магнитного потока Ф — тоже будет определенной на каждой из рассматриваемых площадок S.

Если попытаться объяснить совсем просто, то индукция показывает интенсивность магнитного действия (связанного с силой Ампера), которое способно оказать данное магнитное поле на проводник с током, в это поле помещенный, а магнитный поток обозначает то, как распределена магнитная индукция по рассматриваемой поверхности. Таким образом, энергия магнитного поля катушки с током локализована не непосредственно в витках катушки, а в том объеме пространства, в котором существует магнитное поле, c током катушки связанное.

То, что магнитное поле катушки с током обладает реальной энергией, можно обнаружить экспериментально. Соберем схему, в которой параллельно катушке с железным сердечником подключим лампу накаливания. Подадим на катушку с лампочкой постоянное напряжение от источника питания. В цепи нагрузки тут же установится ток, он потечет через лампочку и через катушку. Ток через лампочку будет обратно пропорционален сопротивлению ее нити накала, а ток через катушку — обратно пропорционален сопротивлению провода, которым она намотана.

Ежели сейчас резко разомкнуть тумблер между источником питания и цепью нагрузки, то лампочка кратковременно но довольно заметно вспыхнет. Это значит, что когда мы отключили источник питания, ток из катушки устремился в лампу, а значит данный ток в катушке был, он имел вокруг себя магнитное поле, и в момент исчезновения магнитного поля в катушке возникла ЭДС.

Данная индуцированная ЭДС называется ЭДС самоиндукции, поскольку навелась она собственным магнитным полем катушки с током на саму эту катушку. Тепловое действие Q тока в данном случае можно выразить через произведение величин тока, который был установлен в катушке на момент размыкания тумблера, сопротивления R цепи (провода катушки и лампы) и продолжительности времени исчезновения тока t. Напряжение, которое возникло на сопротивлении цепи, можно выразить через индуктивность L, полное сопротивление цепи R, а также с учетом времени исчезновения тока dt.

Применим теперь выражение для энергии катушки W к частному случаю — к соленоиду с сердечником, обладающим определенной магнитной проницаемостью, отличной от магнитной проницаемости вакуума.

Для начала выразим магнитный поток Ф через площадь сечения S соленоида, количество витков N и магнитную индукцию B по всей его длине l. Распишем сначала индукцию B через ток витка I, число витков на единицу длины n, и магнитную проницаемость вакуума.

Подставим затем сюда объем соленоида V. Мы нашли формулу для магнитной энергии W, и имеем право взять отсюда величину w – объемную плотность магнитной энергии внутри соленоида.

Джеймс Клерк Максвелл в свое время показал, что выражение объемной плотности магнитной энергии справедливо не только для соленоидов, но и для магнитных полей вообще.

Отрицательная энергия – Negative energy

Отрицательная энергия – это понятие, используемое в физике для объяснения природы определенных полей , включая гравитационное поле и различные эффекты квантового поля .

В более умозрительных теориях отрицательная энергия участвует в червоточинах, которые могут позволить путешествовать во времени и искривлять двигатели для космических путешествий со скоростью, превышающей скорость света .

Содержание

  • 1 Гравитационная потенциальная энергия
  • 2 Квантовые полевые эффекты
    • 2.1 Виртуальные частицы
    • 2.2 Эффект Казимира
    • 2.3 Радиация Хокинга
    • 2.4 Сжатый свет
    • 2.5 Море Дирака
  • 3 предположительных предложения
    • 3.1 Червоточины
    • 3.2 Варп-привод
  • 4 См. Также
  • 5 ссылки
    • 5.1 Встроенные заметки
    • 5.2 Библиография

Гравитационно потенциальная энергия

Сила гравитационного притяжения между двумя массивными объектами на расстоянии между ними представляет собой отрицательное количество гравитационной потенциальной энергии в поле, которое их привлекает. Когда расстояние между ними приближается к бесконечности, гравитационное притяжение приближается к нулю с положительной стороны линии действительных чисел, а гравитационная потенциальная энергия приближается к нулю с отрицательной стороны. Следовательно, когда два массивных объекта движутся навстречу друг другу, движение ускоряется под действием силы тяжести, вызывая увеличение (положительной) кинетической энергии системы и увеличение на ту же величину (отрицательной) потенциальной энергии гравитации. Это потому, что закон сохранения энергии требует, чтобы чистая энергия системы не изменялась. Гравитационная энергия связи – это разновидность потенциальной энергии.

Вселенная , в которой положительные преобладает энергия в конце концов рухнет в « Big Crunch », в то время как «открытая» Вселенная , в которой отрицательные доминирует энергия будет либо неограниченно расширяться или в конечном счете , распадаются в « большим расколом ». В модели Вселенной с нулевой энергией («плоской» или «евклидовой») общее количество энергии во Вселенной равно нулю : количество положительной энергии в ней в форме материи в точности компенсируется ее отрицательной энергией в форме от тяжести . (Неясно, какая из этих моделей точно описывает реальную Вселенную.)

Квантовые полевые эффекты

Отрицательные энергии и отрицательная плотность энергии согласуются с квантовой теорией поля .

Виртуальные частицы

В квантовой теории принцип неопределенности позволяет заполнить вакуум пространства виртуальными парами частица-античастица, которые возникают спонтанно и существуют только короткое время, прежде чем, как правило, снова аннигилируют. Некоторые из этих виртуальных частиц могут иметь отрицательную энергию. Их поведение играет роль в нескольких важных явлениях, как описано ниже.

Эффект Казимира

В эффекте Казимира две плоские пластины, расположенные очень близко друг к другу, ограничивают длины волн квантов, которые могут существовать между ними. Это, в свою очередь, ограничивает типы и, следовательно, количество и плотность пар виртуальных частиц, которые могут образовываться в промежуточном вакууме и могут приводить к отрицательной плотности энергии. Это вызывает силу притяжения между пластинами, которая была измерена.

Радиация Хокинга

Виртуальные частицы с отрицательной энергией могут существовать непродолжительное время. Это явление является частью механизма , участвующего в хокинговского излучения , с помощью которого черные дыры испаряются.

Сжатый свет

Можно организовать несколько лучей лазерного света таким образом, чтобы деструктивная квантовая интерференция подавляла флуктуации вакуума . Такое сжатое вакуумное состояние связано с отрицательной энергией. Повторяющаяся форма волны света приводит к чередованию областей положительной и отрицательной энергии.

Море Дирака

Согласно теории моря Дирака , разработанной Полем Дираком в 1930 году, космический вакуум наполнен отрицательной энергией. Эта теория была разработана для объяснения аномалии квантовых состояний с отрицательной энергией, предсказываемой уравнением Дирака .

Теория моря Дирака правильно предсказала существование антивещества за два года до открытия позитрона в 1932 году Карлом Андерсоном . Однако теория моря Дирака рассматривает антивещество как дыру в отсутствии частицы, а не как настоящую частицу. Квантовая теория поля (КТП), разработанная в 1930-х годах, рассматривает антивещество таким образом, что оно рассматривает антивещество как состоящее из реальных частиц, а не как отсутствие частиц, и рассматривает вакуум как свободный от частиц, а не как полный частицы с отрицательной энергией. как в теории моря Дирака.

Квантовая теория поля вытеснила теорию моря Дирака как более популярное объяснение этих аспектов физики. И теория моря Дирака, и квантовая теория поля эквивалентны посредством преобразования Боголюбова , поэтому море Дирака можно рассматривать как альтернативную формулировку квантовой теории поля и, таким образом, согласовывать с ней.

Спекулятивные предложения

Червоточины

Отрицательная энергия появляется в умозрительной теории червоточин , где она необходима, чтобы держать червоточину открытой. Червоточина напрямую соединяет два места, которые могут быть разделены произвольно далеко друг от друга как в пространстве, так и во времени, и в принципе позволяет почти мгновенно перемещаться между ними.

Варп-привод

Был предложен теоретический принцип сверхсветового ( сверхсветового ) варп-двигателя для космических кораблей, использующий отрицательную энергию. Привод Alcubierre включает решение уравнений Эйнштейна общей теории относительности , в которой пузырек пространства – времени быстро перемещаемых расширения пространства позади нее и сокращение пространства перед ним.

Проблемы отрицательной энергии

Несмотря на то что, объявив о найденном решении уравнений Эйнштейна, Торн произвел настоящую сенсацию, реализация его идей затруднялась некоторыми серьезными препятствиями, трудноустранимыми даже в условиях высокоразвитой цивилизации. Для начала необходимо было получить большие количества отрицательной энергии, а она встречается довольно редко. Действие портала такого типа зависит от наличия большого количества отрицательной энергии, которая не дает порталу закрыться. Если получать отрицательную энергию, как это описал Казимир, действие ее довольно слабое и размер портала будет намного меньше атома, что делает нереальным путешествие через этот портал. Существуют и другие источники отрицательной энергии, кроме описанного эффекта Казимира, но все их довольно сложно контролировать. Например, физики Пол Дейвис и Стивен Фуллинг показали, что создание отрицательной энергии возможно с помощью быстро перемещаемого зеркала, при этом отрицательная энергия аккумулируется перед зеркалом по мере его передвижения. К сожалению, для получения отрицательной энергии зеркало придется перемещать со скоростью, близкой к скорости света. Кроме того, как и в случае с эффектом Казимира, количество полученной отрицательной энергии чрезвычайно мало.

Еще один способ получения отрицательной энергии связан с использованием высокомощных лазерных лучей. Среди энергетических состояний лазера наличествуют «сжатые состояния», в которых сосуществуют положительная и отрицательная энергии.

Однако это взаимодействие тоже довольно трудно контролировать. Стандартный импульс отрицательной энергии может длиться 10 -15 секунды, после чего за ним следует импульс положительной энергии. Отделить состояния положительной энергии от состояний отрицательной энергии возможно, хотя и чрезвычайно трудно. Более подробно я буду говорить об этом в главе 11.

И наконец, оказывается, отрицательная энергия содержится и в черной дыре — у ее «горизонта событий». Как доказали Джейкоб Бекенштейн и Стивен Хокинг (5) , черная дыра не является идеально черной, поскольку она пусть медленно, но испускает энергию. Это происходит потому, что принцип неопределенности делает возможным туннелирование излучения сквозь невероятную гравитацию черной дыры. Но поскольку такая черная дыра теряет энергию, со временем «горизонт событий» сужается. Обычно, если положительное вещество (например, звезду) бросить в черную дыру, то «горизонт событий» расширяется. Но если мы сбросим в черную дыру отрицательное вещество, то «горизонт событий» сузится. Таким образом, испускание энергии черной дырой создает отрицательную энергию возле «горизонта событий». (Некоторые ученые выдвигали идею поместить устье портала-червоточины рядом с «горизонтом событий», чтобы он собирал отрицательную энергию. Однако собирать отрицательную энергию подобным образом было бы крайне сложно и опасно, поскольку вам все время пришлось бы находиться чрезвычайно близко к «горизонту событий».)

Хокинг доказал, что отрицательная энергия в целом необходима для стабилизации всех решений для порталов. Ход его рассуждений довольно прост. Обычно положительная энергия может создать вход в портал-червоточину, который концентрирует вещество и энергию. Таким образом, лучи света фокусируются в устье портала. Однако, если эти же лучи света появятся с другой стороны, то где-то в центре портала-червоточины лучи света должны расфокусироваться. Единственным возможным объяснением такого варианта событий является наличие отрицательной энергии. Далее, отрицательная энергия отталкивает, что необходимо для предотвращения сжатия портала под воздействием силы гравитации. Поэтому ключом к созданию машины времени или портала может быть достаточное количество отрицательной энергии — чтобы устье-вход портала было открыто и находилось в устойчивом состоянии. (Многие ученыефизики уже обнаружили, что при наличии сильных гравитационных полей поля отрицательной энергии — явление обычное.) Так что, возможно, когда-нибудь гравитационную отрицательную энергию смогут использовать для управления машиной времени.

Еще одним препятствием, не позволяющим создать такую машину времени, является следующее: где найти портал-червоточину? Торн опирался на тот факт, что порталы-червоточины создаются естественным путем в том, что называют «пеной» пространствавремени. Это возвращает нас к вопросу, который поставил более 2000 лет назад греческий философ Зенон: каково наименьшее расстояние, которое можно пройти?

Зенон когда-то математически доказал, что реку пересечь невозможно. Сначала он заметил, что расстояние между берегами реки можно разделить на бесконечное количество точек. Но поскольку для того, чтобы пройти бесконечное множество точек, понадобится бесконечное количество времени, то реку пересечь невозможно. Или, если на то пошло, ничто вообще не может двигаться. (Для разрешения этой головоломки понадобятся еще два тысячелетия и соответствующее развитие вычислительной науки. Можно доказать, что бесконечное множество точек можно пройти за конечное количество времени, что, в конце концов, делает движение математически возможным.)

Джон Уилер из Принстона проанализировал уравнения Эйнштейна с целью найти наименьшее расстояние. Уилер обнаружил, что на невероятно малых расстояниях, порядка длины Планка (10″см), теория Эйнштейна предсказывала, что искривление пространства будет достаточно велико. Иными словами, при длине Планка проявляется то обстоятельство, что пространство совсем не гладкое, а сильно искривленное, то есть его характеризуют неоднородность и «пенистость». Пространство становится комковатым и буквально бурлит; при этом крошечные пузырьки выпрыгивают из вакуума и снова исчезают в нем. Даже пустое пространство, если его рассматривать в таком масштабе, постоянно заполнено мельчайшими пузырьками пространства-времени, которые, по сути, представляют собой крошечные порталы-червоточины и вселенные-малютки. Обычно « виртуальные частицы состоят из электронных и позитронных пар, которые появляются, чтобы тут же аннигилировать друг друга. Но при длине Планка крошечные пузырьки, представляющие собой целые вселенные и порталы, могут возникать только для того, чтобы тут же раствориться в вакууме. Наша собственная Вселенная могла зародиться в виде одного из таких крошечных пузырьков, покачивающихся в «пене» пространства-времени, который потом раздулся по неизвестным нам причинам.

Поскольку порталы-червоточины в естественном состоянии можно обнаружить в «пене», Торн предположил, что высокоразвитая цивилизация сможет извлечь эти порталы из «пены», а затем расширить их и стабилизировать с помощью отрицательной энергии. Хотя это достаточно сложный процесс, но он лежит в пределах возможностей, определяемых законами физики.

Машина времени Торна кажется теоретически возможной, хотя, с точки зрения технологии, сконструировать ее чрезвычайно сложно; но существует еще один нерешенный вопрос: противоречат ли путешествия во времени фундаментальному закону физики?

Эффекты, связанные с катушкой отрицательной энергии (КОЭ)

Выше было показано, что уравнение Дирака для свободной частицы имеет ненулевые решения лишь при выполнении условия

Физический смысл состояний с положительной энергией совершенно ясен, но этого нельзя сказать о состояниях с отрицательной энергией.

В свое время Шредингер предлагал просто исключить такие состояния из теории, как не имеющие физического смысла. Однако по поводу такого исключения было высказано два существенных возражения.

Первое из них — физическое, точнее, теоретическое. Уравнение Дирака допускает возможность переходов системы, находящейся в (начальном состоянии с положительной энергией, в конечные состояния с отрицательной энергией. Исключение из теории таких переходов привело бы к внутреннему противоречию теории. Второе возражение является математическим. Оно заключается в том, что исключение состояний с отрицательной энергией приводит к нарушению полноты набора волновых функций. Разложение произвольной функции по неполному набору функций невозможно. Указанные обстоятельства шривели Шредингера к непреодолимым трудностям.

Задача. Пусть при частица, движущаяся по оси находилась в состоянии с положительной энергией и со спином . В момент времени включается постоянный потенциал который в момент выключается. Найти вероятность того, что в момент времени частица будет находиться в состоянии с отрицательной энергией.

Следует заметить, что при Однако, когда , обращаются в нуль также и компоненты дираковского спинора а, поэтому такой предельный переход в окончательных формулах всегда возможен. Правильные результаты можно получить, не прибегая к такому предельному переходу, а просто в компонентах дираковского спинора и положить и нормирующий множитель опустить.

В области положительных значений уровни энергии свободной частицы образуют непрерывный спектр, простирающийся от области отрицательных значений, если таковые допустить, — непрерывный спектр от до

Между уровни энергии свободной частицы отсутствуют (см. фиг. 9). Дирак высказал идею, что все состояния с отрицательной энергией обычно заняты.

Все объяснения довольно туманного резервуара состояний с отрицательной энергией, если он и существует, как правило, содержат элементы чисто психологического характера, и поэтому не очень убедительны. Тем не менее, если встать на эту точку зрения, можно сделать несколько весьма важных выводов.

1. Так как все состояния с отрицательной энергией заняты, переходы электронов из состояний с положительной энергией в такие состояния происходить не могут.

2. Электроны в резервуаре состояний с отрицательной энергией не наблюдаемы. При переходе электрона в состояние с положительной энергией в резервуаре образуется «дырка», которая обнаруживает себя. Такая «дырка» ведет себя как позитрон, т. е. электрон с положительным зарядом.

3. Принцип Паули позволяет говорить о заполненности резервуара состояний с отрицательной энергией. Если бы в каждом состоянии могло находиться произвольное число электронов (а не только один), то такой резервуар состояний заполнить было бы невозможно.

В связи с этим теорию Дирака часто рассматривают как «доказательство» принципа Паули.

Иная интерпретация состояний с отрицательной энергией была предложена автором этих лекций. Основная идея этой интерпретации состоит в том, что состояния с отрицательной энергией рассматриваются как состояния, в которых движение электронов носит попятный характер во времени.

В классическом уравнении движения

изменение направления собственного времени 5 эквивалентно изменению знака заряда частицы, так что попятно движущийся электрон подобен позитрону, движущемуся в обычном направлении.

В элементарной квантовой механике при вычислении полной амплитуды вероятности перехода электрона из точки в точку производится суммирование по всем возможным траекториям электрона между этими точками при условии, что время для всех них течет в обычном направлении.

Такие траектории частицы представлены кривыми на фиг. 10. Изложенная же выше точка зрения автора на состояния с отрицательной энергией допускает также возможность существования траекторий вида, представленного на фиг. 11.

Для наблюдателя, воспринимающего течение времени обычным путем из прошедшего в будущее, последовательность событий на фиг. 11 выглядит следующим образом:

При квантовомеханических применениях изложенной идеи необходимо следовать двум правилам.

1. При вычислении матричных элементов перехода для позитронов волновые функции начального и конечного состояний необходимо поменять местами.

Так, матричный элемент перехода электрона из состояния прошедшего во времени в состояние будущего определяется выражением

Если же электрон совершает попятное движение из будущего в прошедшее, то для матричного элемента перехода имеем

2. Волновая функция свободного электрона в состоянии с положительной энергией Е имеет вид причем Если же энергия Е отрицательна, то волновая функция описывает позитрон с энергией — Е (т. е. ) и 4-импульсом — .

Секрет магнитного генератора Перендева. Делаем своими руками

Секрет магнитного генератора Перендева. Делаем своими руками

Всем доброго вечера, мы с отцом уже давно ломаем голову над знаменитым двигателем Perendev перепробовали много вариантов, был у нас один двигатель суть его в том чтобы на роторе разместить магниты как можно плотнее и все с одним полюсом наружу а на статоре разместить три полюса магнитов которые будут сдвинуты друг от друга (во общем то что Perendev сделал за счет трех дисков):

Вот статья неплохая по поводу принципа роботы двигателя Perendev которая дает ответы на многие вопросы.

При внимательном изучении патента перендева (ссылка на патент находится на российский странице, вход с немецкого сайта) обнаружился рисунок собственно “единичного элемента”, то-бишь экранированного магнита.

Судя по чертежу, цилиндрический магнит находится внутри не просто толстостенного железного цилиндра, а внутри цилиндра, на торце которого добавлено кольцо металла.

Таким образом края магнита, (с максимальными магнитными потоками) спрятаны в железо. Для взаимодействия оставлена только площадка в центре магнитной “таблетки”.

Видимо, для проверки принципа достаточно промоделировать несколько вариантов единичного элемента – учесть геометрию цилиндра, изображенного в патенте, и изготовить его из нержавейки (как утверждает автор) и из обычного магнитомягкого железа. Скорее всего, сам магнит должен удерживаться внутри цилиндра неким кольцом из изолятора, чтобы не соприкасался с железом, иначе пойдет намагничивание цилиндра со всеми последствиями.
Что касается графита, согласно утверждению автора, то я сомневаюсь, чтобы сочетание нержавейки с графитом в любых геометрических положениях смогло хотя бы частично экранировать магнит.

Однако, можно попробовать проверить и это.
Я проверил с обычным цилиндром из нержавейки с таблеткой внутри, экранирования нету.

——————————–
В интервью Брэди нашел фразу, что все магниты срезаны на конус, изолированы прослойкой и вставлены в экранирующие цилиндры.

Основная идея в следующем:
Поясню без рисунка. На пальцах.
Возьмем отрезок времени 5 секунд, (для простоты).
на цилиндрическом роторе находится скажем 9 или 11 магнитов. а на статоре соответственно 8 или 10.
в первую секунду 1й магнит ротора находится в мертвой точке. На него действует максимальная сила противодействия движению =х. В эту-же секунду магнит 2 уже прошел свою мертвую точку,и тянет с некоторым плюсовым усилием . соответственно №3 тоже находится после мертвой точки, и тоже в плюсе. и так до №9.

во вторую секунду в мертвую точку входит №2, а все остальные в эту же вторую секунду (или любую другую минимальную единицу времени) тянут с положительным усилием, компенсируя мертвую точку.

Смысл в том, что при разном количестве магнитов в статоре и роторе, их расположение должно быть таким, чтобы в ЛЮБОЙ момент времени в МТ находился ТОЛЬКО ОДИН магнит, а все остальные, количество которых не может быть меньше какого-то определенного чмсла, должны своим суммарным тяговым усилием компенсировать прохождение этой единичной мертвой точки.
Количество магнитов нужно подсчитывать в каждом конкретном случае отдельно.
Несомненно одно, построить модель на 3-5 магнитах не получится по определению.
Количество роторных должно быть таким, чтобы сумма находящихся в разном положении магнитов ротора относительно статора была БОЛЬШЕ усилия мертвой точки для единичного магнита, или, если угодно, пары ротор-статор, зависших в МТ.

Нужно просто понять этот принцип.
Три кольца прототипа у Perendev создаст только повышенную мощность, для раскрутки генератора в 20 квт (видео). Но каждое отдельно взятое кольцо, вернее- пара, ротор-статор имеют как раз такой расклад сил.

Безусловно, нужно очень точно позиционировать магниты на кольце, чтобы соблюсти это условие.
а добавки Perendev в виде изолирующих железных цилиндров просто убирают паразинтые влияния магнитов друг на друга, оставляя в голом виде этот самый принцим, поскольку при подходе к МТ , имея экран, магнит ротора взаимодействует только со своим статорным магнитом, не чувствуя паразитных полей соседних магнитов статора и ротора.
Т.е принцип в чистом виде.
Совершенно понятно, что такие конструкции возможны только в цилиндрических формах, однако проверить правильность этого моего утверждения можно и на линейной модели.
Для этого расстояния между магнитами ротора на линейке должны быть больше на какую-то величину, чем расстояние между магнитами статора на другой линейке.
Но ни в коем случае НЕ равными.
Для примера можно разместить на линейном статоре 30 магнитов с интервалом 10 мм, а на роторной линейке штук 9-11 с интервалом в 11 мм.

Магнитный двигатель Перендева: на шаг ближе к мечте о вечном двигателе

Дата публикации: 17 января 2020

  • Немного исторических фактов
  • Принцип действия и конструкция магнитного двигателя Перендева
  • Элементы и сборка двигателя Перендева
  • Перспективы дальнейших усовершенствований двигателя Перендева на магнитах

Открытие явления постоянных магнитов имело немало положительных последствий для мировой науки и экономики, открыв перед инженерами возможность создания уникальных механизмов электротехнических устройств. Но те, кто предпочитает смотреть в далекое будущее, увидели в новой технологии реальный шанс на веки прославить свое имя, создав мечту человечества — вечный двигатель. Один из них, инженер из ЮАР Майкл Брэди сумел не только рассчитать, но и собрать подобное устройство, презентовать его широкой аудитории и получить патент на собственное изобретение. Прошло более 50 лет, а продвинутые умы до сих пор пытаются реализовать его план в домашних или промышленных условиях, собрав фирменный двигатель Перендева своими руками.

Немного исторических фактов

Впервые попытка сконструировать магнитный вечный двигатель была предпринята в середине прошлого столетия. 1969 год стал переломным для данного направления научной мысли: публике был представлен полностью работоспособный мотор, цикл которого был конечным, но значительно отличался от других образцов продолжительностью действия. Оправданием этому стали слабые магниты, задействованные в конструкции, и высокая сила трения, погасившая полезную энергию устройства.

Решив погреться в лучах капризной славы на волне всеобщего энтузиазма, специалист Майкл Брэди из Африки сумел сконструировать рабочий движок на 6 кВт. Чтобы развеять любые сомнения в своей изобретательности и смекалке, он снял видеоролик про собственный альтернативный двигатель Перендева и выложил его в Интернет, где с разработкой успели ознакомиться миллионы пользователей сервиса YouTube. Либо они были одурманены увиденным и дали волю мечтам, либо изобретатель сумел мастерски обвести зрителей вокруг пальца, но разработка имела головокружительный успех.

Пользуясь случаем, Брэди инициировал сбор средств на изготовление генераторных установок Perendev на 100 и 300 кВт, чего вполне хватило бы для бесперебойной работы масштабного производства. Миллион долларов — неплохо для стартапа, даже если это очередной мыльный пузырь. С внушительной суммой смекалистый инженер успел переселиться в Швейцарию и признал себя банкротом, чтобы провести остаток дней в роскоши и комфортной жизни. Однако вскоре в отношении горе-изобретателя был начат уголовный процесс, где в адрес главного героя было сказано слово «мошенник». До сих пор его открытие будоражит пытливые умы, а попытки создания двигателя Перендева на магнитах активно обсуждаются на тематических форумах.

Принцип действия и конструкция магнитного двигателя Перендева

На деле магнитные устройства вполне могут стать прообразом настоящего вечного двигателя. Они практически не нуждаются в энергии, приходя в движение за счет силы притяжения и отталкивания. Но стартовый импульс должен дать именно внешний источник энергии, что противоречит основному принципу вечного двигателя — автономности работы. Популярные сегодня офисные безделушки в виде сталкивающихся намагниченных шариков на тонкой проволоке или «плывущих» дельфинов олицетворяют принцип действия такого механизма, но запускаются в работу от обычной батарейки-«таблетки».

Первым человеком, сумевшим создать прообраз вечного двигателя, стал Никола Тесла. Но даже его устройство не было идеальным, поскольку начинало работать только от электрического импульса. Двигатель Брэди продолжает эту идею. Устранив силу трения, на которую расходуется значительная часть КПД устройства, он пытается довести коэффициент до 100%.

Элементы и сборка двигателя Перендева

Основные узлы модели представлены на схеме:

1 — Раздел силовых линий
2 — Вращающийся ротор
3 — Статор, находящийся вне магнитного поля
4 — постоянный магнит кольцевой формы

5 — Постоянные магниты плоской формы
6 — Металлический корпус вне действия магнитного поля

В качестве ротора можно задействовать шарик от подшипника, а на место кольцевого магнита установить элемент громкоговорителя. Полюса постоянного магнита находятся на обеих плоскостях. Его ограничивают кольца-барьеры из материалов, не подверженных намагничиванию. Между кольцами помещают стальной шарик, призванный играть роль вращающегося ротора. Он притягивается к магниту за счет взаимодействия противоположных полюсов.

Статор магнитного двигателя Perendev представляет собой экранируемую металлическую пластину. На ней закрепляют небольшие плоские магниты, ориентируясь на размеры кольцевого магнита. При приближении шарика к статору в магнитах поочередно возникает сила притяжения и отталкивания, запуская ротор по траектории кольцевого магнита. Пока электромагнитные свойства элементов будут сохраняться на высоком уровне, вращение шарика обеспечено.

Полезные советы, схему двигателя Перендева и информацию по сборке можно уточнить, просмотрев следующий видеосюжет:

Перспективы дальнейших усовершенствований двигателя Перендева на магнитах

Скептики, с изрядной долей сомнений относящиеся к громким изобретениям, доказывают невозможность создания вечного двигателя. По их авторитетному мнению, постоянное получение энергии из ниоткуда невозможно ни с точки зрения науки, ни с позиций здравого смысла. Однако в отношении магнитного поля стоит сделать исключения: это особый вид материи с плотностью до 280 кДж/куб.м, внутри которого действуют физические законы. Указанного значения достаточно, чтобы смело рассчитывать на получение энергетического потенциала для запуска и работы движка. Это подтверждают многочисленные научные труды и запатентованные изобретения. А вот действующие механизмы, к сожалению, пока присутствуют только в мечтах изобретателей или хранятся в обстановке строгой секретности. Возможно, увидеть их в действии не получится: через несколько десятков лет даже сильный магнит теряет силу, и мотор окажется бесполезным куском металла.

  • Интересные факты о водородном топливе
  • Презентация «народной» гелиолодки «Россия»
  • Фирма Samsung SDI представила новые батареи
  • Новости альтернативной энергетики

Вам нужно войти, чтобы оставить комментарий.

Читайте также:  Трансформатор Тесла на качере Бровина своими руками и съем энергии
Ссылка на основную публикацию