Мотор-генератор своими руками (опыты, видео, принцип работы)

Мотор-генератор своими руками (опыты, видео, принцип работы)

База самоделок для всех!

Мотор-генератор своими руками (опыты, видео, принцип работы)

Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.

За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом.

Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента.

Результаты экспериментов, которые привели к изобретению мотора-генератора.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.

1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения.

После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.

2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока.
При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.

Из рисунков видно, когда полюсы магнита, находятся напротив выводов обмотки (рис. 4;8), ток в обмотке равен 0. При положении магнита, когда полюсы находятся в центре обмотки, мы имеем максимальное значение тока (рис. 2;6).

3) Нa следующем этапе экспериментов, использовалась только одна половина обмотки. Магнит также медленно вращался, и фиксировались показания прибора.

Показания прибора полностью совпадали с предыдущим экспериментом (рис 1-8).

4) После этого к магниту подключили внешний привод и начали его вращать на максимальных оборотах.

При подключении нагрузки, привод начал набирать обороты!

Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.

Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться.

5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.

По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.

Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля).

При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания.

6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.

При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.

7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента.

8) Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.

После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1,
но при этом появился тормозной момент на привод.

9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.

10) Сопоставим два варианта

Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода).

11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты.

При этом карта полюсов обмотки с магнитопроводом выглядит так:

На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода.

Принцип работы Мотора Генератора.

Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС.

Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).

Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).

1) Обмотка статора
2) Магнитопровод статора
3) Индуктор (ротор)
4) Нагрузка
5) Направление вращения ротора
6) Центральная линия магнитного поля полюсов индуктора

При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС.

При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока.
Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки.

При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.

Рисунки:
1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0.
2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора).
3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС.
4) Полюс приближается к концу обмотки и ЭДС снижается до минимума.
5) Следующая нулевая точка.
6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).

Видео-ролик первого эксперимента:

Видео-ролик второго эксперимента:

Генератор из асинхронного двигателя своими руками

Не всегда покупка заводского генератора является целесообразной. Иногда проще использовать подручные материалы и инструменты, чтобы сделать его самостоятельно. Устройства мощностью до 1 кВт будет достаточно для подключения уличного освещения на даче или любых других бытовых приборов. Можно соорудить такой генератор из асинхронного двигателя.

Конструктивные особенности

Изготовление асинхронного генератора своими руками дает множество преимуществ. Это бесплатный источник электричества, который можно использовать в разных целях. К тому же сделать такую работу может даже начинающий мастер.

Конструктивно схема электрогенератора будет состоять из нескольких ключевых элементов:

  1. Ротор. Он имеет лопасти, турбину и хвост, который позволяет монтировать конструкцию против направления ветра.
  2. Мачта. Может быть с растяжками или без, которые нужны для установки ротора. Как правило, высота мачт составляет около 5—6 метров, хотя это зависит от ветров в определённом регионе.
  3. Аккумуляторы. Можно взять старые свинцовые агрегаты.
  4. Электрогенератор переменного тока. Для этого нужно подготовить двигатель для последующей переделки.
  5. Устройство с дисплеем, чтобы регулировать уровень заряда аккумулятора.
  6. Преобразователь электричества. Достаточно мощности в 1 тыс. Вт.
  7. Система заземления.
Читайте также:  Самодельный автоматический котел на древесных гранулах

Принцип работы устройства

Принцип работы самодельных генераторов переменного тока на 220 В ничем не отличается от устройств, которые применяются в промышленных целях. И те и другие перерабатывают кинетическую энергию в электрическую.

В конструкциях, изготовленных своими руками, сила ветра крутит ветряк, который закреплён на роторе. Таким образом, кинетическая энергия передаётся генератору. Он и производит электроэнергию. В качестве генератора зачастую используется переделанный асинхронный двигатель.

Вырабатываемая генератором электроэнергия передаётся в аккумуляторы. Последние должны оснащаться модулем контроля заряда. Из аккумуляторов электроэнергия поступает в инвертор постоянного напряжения. Таким образом, можно создать переменное напряжение. Оно будет подходить для использования в бытовых целях, то есть с параметрами 220 В и 50 Гц.

Чтобы преобразовать переменное напряжение в постоянное, необходимо установить специальный контроллер. Именно благодаря ему аккумуляторы заряжаются. Иногда инверторы могут выполнять функцию источника бесперебойного питания. То есть в случае отсутствия централизованного электричества или перебоев в его работе асинхронный генератор переменного тока можно использовать для бытовых целей, питания различных приборов, работающих на 220 В.

Необходимые материалы и инструменты

Для изготовления мотора-генератора своими руками достаточно иметь антисинхронный двигатель. Остальные материалы можно найти в хозяйстве или на специализированных рынках радиотехники.

Могут понадобиться такие инструменты и материалы:

  1. Труба из стали с толщиной стенок не менее 3 мм и общим диаметром 6 см и больше. Высоту нужно подбирать индивидуально, в зависимости от скорости ветров в регионе. Но нужно помнить, что чем выше будет мачта, тем сильнее будет дуть ветер и, соответственно, вырабатываться больше электричества.
  2. Для изготовления лопастей можно использовать различные материалы, но лучше купить готовую деталь заводского производства, так как она будет идеально откалибрована. Самостоятельно изготовить её можно из труб или листов ПВХ, металла. Кроме этого, может подойти деревянная доска, профиль из стеклоткани.
  3. В качестве основы (опоры для мачты) подойдёт бетонная стяжка. С другой стороны, можно использовать металл или дерево. Нужно только помнить, что за надёжность конструкции отвечает основа. Если опора будет слабой, то мачта со временем рухнет от ветра.
  4. Дрель и набор свёрл.
  5. Ножовка.
  6. Разводной ключ.
  7. Рулетка.
  8. Лист металла, который будет служить материалом для изготовления мачты.
  9. Стальная рама. Она будет выполнять функцию основы для ветрогенератора, поворотного механизма и лопастей.
  10. Весь необходимый дополнительный инструмент, включая сварку, с помощью которого можно изготовить устройство.
  11. Хомуты для фиксации растяжек.
  12. Металлический трос с сечением 12 мм.

Характеристики ветрогенератора

Сначала необходимо определиться с желаемым итоговым результатом. Характеристики электродвигателя, выполняющего роль генератора, могут быть разными, и от этого зависит, сколько электроэнергии устройство будет вырабатывать за единицу времени.

Для производства среднего количества энергии генератор должен иметь приблизительно такие характеристики:

  1. Минимальная мощность установки — 1.3 кВт.
  2. Желательны неодимовые магниты в конструкции. Их функция заключается в обеспечении электромагнитной движущейся силы. Для этого может применяться и стальная гильза, которая устанавливается на ротор.
  3. Расположение магнитов на роторе должно соответствовать схеме. Это значит, что их полюсы должны быть развёрнуты в правильную сторону.
  4. Предварительно вал ротора нужно проточить и подогнать размеры под диаметр магнитов.
  5. При установке магнитов не всегда требуется переделывать обмотку. Если она состоит из проводов с большим сечением — ничего страшного, это только увеличит мощность. Самым лучшим вариантом обмотки будет устройство, имеющее шесть полюсов, провод с сечением не более 1.2 мм и максимум 24 витка на катушке.

Нюансы монтажа

Как правило, для изготовления ветро генератора из асинхронного двигателя своими руками применяется ветряк с тремя лопастями, которые в диаметре достигают двух метров. Если увеличить количество лопастей или их длину, то улучшение характеристик не произойдёт. Перед тем как выбирать модификацию устройства, тип, характеристики, габариты, необходимо осуществить правильный расчёт.

Для начала нужно рассчитать мощность самой мачты. Она должна устанавливаться на бетонную основу толщиной полметра. Предварительно следует вырыть яму, также учитывая при этом состояние и тип почвы.

Подключать к электросети каждый из приборов нужно в определённом порядке. Сначала идут аккумуляторы, а потом уже и ветрогенератор. Вращаться вал электромотора может либо горизонтально, либо вертикально. Как правило, устанавливают в вертикальном положении, это связано с конструктивными особенностями. Для обеспечения защиты от влаги генератор оборудуют прокладками или колпаком.

Для установки мачты необходимо выбрать открытое место, где будет максимальное количество ветров. Высота монтажа генераторного устройства должна быть достаточно большой. Переделанный асинхронник в идеальном варианте устанавливается на высоте 15 метров, но на практике мачты более 7 метров никто не использует.

В качестве основного источника электрического питания дома устройство лучше не использовать. Такое тихоходное устройство следует устанавливать для страховки от ситуаций с перебоями в электричестве или для экономии семейного бюджета, поскольку счёт за централизованную подачу существенно уменьшается.

Стоит отметить, что установки подобного типа можно использовать не во всех регионах. Минимальная скорость ветра для целесообразности использования должна постоянно держаться на отметке 7 метров за секунду. Если этот показатель меньше, то и электроэнергии будет вырабатываться очень мало.

Перед установкой проводятся необходимые расчёты. В некоторых ситуациях могут возникнуть сложности с обработкой узлов асинхронного движка. Ветряк нельзя изготовить без соответствующих модулей, а также проведения предварительных испытаний устройства. Подключение такого оборудования осуществить невозможно.

Переделка своими руками

Конечно, можно купить асинхронный генератор заводского производства, но вариант самостоятельного изготовления значительно экономнее и не занимает много времени. В процессе не должно возникнуть никаких сложностей даже у неопытного человека.

Для переделки коллекторного двигателя переменного тока необходимо подготовить некоторые инструменты. Выполнять работу нужно с учётом определённых правил:

  1. Основной особенностью работы устройства является более высокая скорость вращения вала генератора, нежели двигателя. Поэтому сначала следует выяснить количество оборотов мотора за определённое время. Сделать можно такую операцию тахометром.
  2. Зная этот показатель, к полученой цифре требуется прибавить 10%. То есть при оборотах мотора в 1200 оборотов за минуту генератор должен иметь вращение 1310 оборотов.
  3. Для производства однофазного устройства или трёхфазного на 380 вольт необходимо подготовить ёмкость для конденсаторов. Следует учесть, что все конденсаторы системы не должны отличаться фазами.
  4. Ёмкость лучше подбирать средних размеров. Если она будет очень большой, то моторчик может перегреваться.
  5. К выбору и установке конденсаторов нужно подойти особо тщательно. Они должны обеспечивать нужное вращение вала двигателя. Их изоляция также важна во избежание попадания влаги.

Генератор можно взять и с других устройств, к примеру, от автомобиля ВАЗ. После этого требуется переходить к его монтажу на мачту. Следует помнить, что в случае использования ротора, работающего в короткозамкнутом режиме, устройство будет вырабатывать ток с высоким напряжением.

Для получения 220 вольт следует оснастить устройство понижающим трансформатором. Устройство не нужно подключать к электросети, поскольку оно работает по методу самозапитки.

Таким образом, сделать генератор из асинхронного двигателя не является сложной задачей даже для начинающего мастера. Если учесть все возможности устройства, то можно сделать вывод, что в определённых ситуациях оно поможет с перебоями электричества, а при установлении очень мощного ветрогенератора будет основным источником энергии в доме.


Генератор Бедини своими руками в домашних условиях: вечный двигатель на несколько дней

Дата публикации: 27 октября 2019

Попытки найти в окружающем пространстве неисчерпаемые источники энергии предпринимались много раз. Физики-теоретики справедливо полагают, что она скрывается в разности температур, в напряженности магнитного и электрического полей, в излучаемых фотонах. Если человечество сумеет найти способ получения и накопления такой энергии, она бы с лихвой покрыла текущие затраты и позволила без ограничений развивать энергоемкие производства, не оглядываясь на их себестоимость. В числе многочисленных вариантов добычи энергии из окружающего пространства – двигатель Джона Бедини. По словам самого изобретателя, он стал первым, кто загнал энергетические запасы в аккумуляторную батарею и научился перенаправлять их на снабжение энергозависимых устройств.

Впервые общественность увидела разработку Бедини в 1984 году. Настоящий фурор вызвал так называемый энерджайзер – вращающийся элемент, который не терял число и скорость оборотов в течение длительного времени. При этом устройство не было запитано от сети и не получало энергию от привычных батарей или иных источников. Более детальное изучение генератора Джона Бедини показало: взаимодействие нескольких постоянных магнитов и электромагнитной катушки создает импульсы, которые отталкивают подвижный магнитный элемент от ферромагнитного основания. Таким образом, получая энергию внутри себя, устройство уверенно вращалось, не собираясь останавливаться. Чуть позже Бедини представил на суд публики усовершенствованную конструкцию генератора, который мог свободно вращаться в течение девяти дней, не нуждаясь в питании или подзарядке.

Конструкция и принцип действия мотора генератора Бедини

Соблазн развенчать новоявленного создателя вечного двигателя заставил ученых разных стран мира детально заняться вопросом поиска энергии в окружающем пространстве. Те, кто собрался повторить опыт изобретателя и собрать генератор Бедини своими руками в домашних условиях, детально изучили представленный образец. В числе основных элементов были выделены:

  • энерджайзер – вращающийся элемент с несколькими постоянными магнитами;
  • катушка на две обмотки с ферромагнитным основанием;
  • аккумуляторная батарея;
  • блок управления, состоящий из диода, транзистора и резистора;
  • дополнительная катушка для токосъема, к которой подключен светодиод.

Общая схема генератора Бедини с самозапиткой выглядит следующим образом: вращение постоянных магнитов энерджайзера создает возбуждение в сердечнике основной катушки. В выходных обмотках появляется электродвижущая сила, и электрический ток начинает протекать по виткам пусковой обмотки через блок управления. В момент нахождения магнита над индуктивной катушкой сердечник получает дополнительный заряд энергии и тем самым открывает транзистор. В этот момент ток поступает на рабочую обмотку, заряжая аккумуляторную батарею.

Читайте также:  Солнечная зарядка для литиевого аккумулятора своими руками

Дальнейшее намагничивание сердечника приводит к отталкиванию однополюсного магнита на вращающейся основе. Это ускоряет движение энерджайзера, и по мере увеличения скорости его вращения электромагнитные импульсы возникают с увеличивающейся частотой. И потребляющий светодиод, сначала работающий в моргающем режиме, быстро начинает светиться без перерывов. Это позволило Бедини заявить, что он сумел подчинить себе энергию пространства и создал прообраз вечного двигателя, который производит больше энергии, чем потребляет.

Генератор Бедини на самозапитке: развенчание мифа

Первая эйфория от изобретения прошла достаточно быстро. Умельцы, сконструировавшие генератор Бедини своими руками по схеме автора, быстро поняли, что якобы вечное движение без подзарядки сравнительно быстро заканчивается и прибор останавливается. Никто не спорил, что открытие имеет неплохие перспективы на условиях доработки и усовершенствования. Но назвать его вечным двигателем было бы преувеличением.

Доказать несостоятельность представленного устройства можно, если собрать и протестировать генератор Бедини на самозапитке. Единственное, что стоит учесть, — длительность такого эксперимента. На фоне мощных аккумуляторов расход энергии на вращение энерджайзера минимален, поэтому ее запасов хватит надолго. Возможно, этот момент и стал фактором обмана комиссии по изобретениям, которым мотор Бедини был представлен как условно-вечный.

Собрать конструкцию генератора Бедини на мофсет транзисторе можно по предлагаемой схеме.

Задача опыта – доказать, что в устройстве происходит так называемое приращение энергии, которая стимулирует дальнейшее вращение и не дает энерджайзеру останавливаться. Далее рекомендуется действовать по такому плану:

  • Две равные по емкости аккумуляторные батареи заряжают в течение одинакового времени в одной сети;
  • После полного заряда одну из батарей разряжают, не допуская ее полной разрядки. Оптимальный вариант – подключение ее к лампе накаливания на условиях постоянного контроля заряда.
  • Замеряют начальное напряжение и плотность батарей.
  • Батареи подключают к генератору следующим образом: полную – в качестве первичного аккумулятора, разряженную – в качестве вторичного.
  • Установка подключается в работу.
  • В процессе работы необходимо контролировать уровень заряда первой и второй батарей.
  • Если уровень напряжения в первичной батарее достигнет значения вторичной до момента ее подключения к генератору, двигатель следует отключить. Если же уровень заряда вторичной батареи увеличится до уровня первичной АКБ, двигатель также отключают.
  • Замеряют напряжение и плотности батарей, какое-то время проработавших в установке Бедини.

Чтобы упростить задачу, можно использовать вместо двух аккумуляторов один в качестве и первичного, и вторичного источника энергии. При этом важно переключить выход установки с вторичных батарей обратно на первичную. Если нужно сократить длительность элемента, в качестве потребителя стоит подключить к генератору лампу накаливания на 10-15 Вт.

В подавляющем большинстве экспериментов заряд первичной батареи снижался, а уровень заряда второй увеличивался незначительно или оставался на прежнем уровне. Добиться горения лампы в течение хотя бы нескольких недель не удалось никому. Таким образом, вечный двигатель Бедини – интересная, но простая игрушка, действие которой не вышло за рамки законов, известных современной физике.

Вам нужно войти, чтобы оставить комментарий.

Самодельный генератор из асинхронного электродвигателя

В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.

Внешний вид асинхронного электродвигателя

В разрезе показаны основные элементы:

  1. чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
  2. корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
  3. коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
  4. плотные жгуты медных проводов обмотки статора;
  5. стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.

Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.

Детальная разборка асинхронного двигателя

Достоинства генераторов, переделанных из асинхронных двигателей:

  1. простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
  2. возможность вращения генератора электротока ветряной или гидротурбиной;
  3. генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
  4. возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.

Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.

Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.

Принцип работы генератора

В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.

Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.

Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.

Этот принцип работы используется практически в электровозах, трамваях при необходимости плавного торможения. По такому же принципу некоторые «Кулибины», замедляют вращение диска электросчётчиков, пытаясь сократить расходы на электроэнергию.

Преобразование

Как практически своими руками преобразовать асинхронный электродвигатель в генератор?

Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.

Открытое борно с контактной группой

Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».

Схемы включения «Звезда» и «Треугольник»

На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:

  • максимальные токи;
  • напряжение питания;
  • потребляемая мощность;
  • количество оборотов в минуту;
  • КПД и другие параметры.

Параметры двигателя, которые указаны на шильдике

В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».

Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.

Схема подключения конденсаторов на генераторе в «Треугольник»

Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.

Как выглядит бесполюсный конденсатор марки КБГ-МН

Так как в бытовых условиях рассчитать необходимую ёмкость конденсаторов для используемого двигателя практически невозможно, экспериментальным путём была составлена таблица.

Расчёт ёмкости конденсаторов для используемого двигателя

Номинальная выходная мощность генератора, в кВтПредположительная ёмкость в, мкФ
260
3,5100
5138
7182
10245
15342

В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.

Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.

Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.

Монтаж системы мотор-генератор

При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.

Схема мотор-генератора на ременной передаче

На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:

1230 + 10% =1353 об/м.

Ременная передача рассчитывается по формуле:

Vг – необходимая скорость вращения генератора 1353 об/м;

Vм – скорость вращения мотора 1200 об/м;

Dм – диаметр шкива на моторе 15 см;

Dг – диаметр шкива на генераторе.

Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.

Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.

Генератор на ниодимовых магнитах

Как сделать генератор из асинхронного электродвигателя?

Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:

  • Снять переднюю и заднюю крышки асинхронного электродвигателя.
  • Извлечь ротор из статора.

Как выглядит ротор асинхронного двигателя

  • Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
  • На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.

Установка магнитов на ротор

  • Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
  • Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
  • После просушки, ротор можно поставить на место и закрыть крышки;
  • Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
  • Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.

Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.

Видео. Г енератор из асинхронного двигателя.

Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.

Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.

Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!

В настоящее время хорошо известен способ превращения электрической энергии во вращательное движение. Для этого человечество изобрело электродвигатели. Они имеют множество разновидностей, начиная от двигателей постоянного тока и заканчивая асинхронными двигателями переменного тока, но суть этого преобразования одна — электричество преобразуется во вращательное движение.

И без электричества человечество слабо представляет себе собственное существование. Поэтому в местах где нет электричества или существуют его серьезные перебои необходимость генераторов в сегодняшнем мире жизненно необходима.

Причем если существует бесплатный источник вращения, то ли вода или ветер, то такой генератор превращается в мини электростанцию. Так как стоимость электричества создаваемого бензиновым или дизельным генератором достаточно велика.

Краткое содержимое статьи:

Зачем нужны асинхронные генераторы?

Если рассмотреть фото асинхронных генераторов, то легко заметить что с первого взгляда практически невозможно отличить их от обыкновенных двигателей.

Суть в том, что это практически одни и те же электрические машины используемые в другом направлении и имеющие разные схемы подключения. Поэтому достаточно просто переделать одну такую машину в другую.

Эта статья поможет разобраться в том как это осуществить на практике. В современном мире множество генераторов и большинство из них асинхронные. Так как значительным преимуществом таких электрических машин является их простота, надежность и легкость в наладке системы.

Типы асинхронных генераторов

Если рассмотреть виды асинхронных генераторов, то их все можно разделить на две категории по виду электроэнергии которые они вырабатывают. Это однофазные и трех фазные.

По способу возбуждения генератора существуют модели с внешним источником возбуждения, для этого нужен дополнительный источник энергии и генераторы с самовозбуждением, которые могут работать совершенно автономно.

Именно такие генераторы можно применять для мини электростанций.

Устройство асинхронных генераторов

При рассмотрении устройства асинхронных генераторов, необходимо обратить особое внимание на основные элементы электрической машины без которых он не сможет существовать, а именно:

  • Ротор генератора — это элемент вращения, на котором наводится электродвижущаяся сила. Именно вал ротора и является тем элементом, который приводится в движение. Обычно обладает короткозамкнутыми обмотками.
  • Статор или статарная обмотка неподвижный элемент крепящийся к корпусу генератора и внутри которого находится ротор. Именно в этой обмотке индуцируется рабочее напряжение генератора.
  • Корпус генератора.
  • Подшипники, удерживающие ротор в рабочем положении.
  • Элементы безопасности такие как, термореле, коротко замыкатель и щетки регулятора.

Как функционирует генератор

Принцип работы асинхронных генераторов изучался еще в средней школе. При вращении ротора на нем наводится ЭДС создающая вращающееся магнитное поле. Это вращающееся магнитное поле вырабатывает в катушке статора электромагнитную индукцию, которая и снимается с генератора.

Важнейшим недостатком таких генераторов является невозможность регулировки получаемого в результате генерации напряжения.

Поэтому чаще всего такое напряжение подается на полупроводниковый выпрямительный мост и превращается в постоянное. Удобное для дальнейшего применения.

Как сделать генератор своими руками

Инструкция как сделать асинхронный генератор достаточно проста. Для этого достаточно найти рабочий асинхронный электродвигатель.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил – переломил вдвое плату вместе с металлической пластиной крепления.

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было. На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора, вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 – 100 мкФ х 16 В, все шесть диодов 1N5817.

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант – поставить на выход стабилизатор.

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика – «жучка».

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

Схема собрана, вновь обращённый генератор к тесту готов.

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео – работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве ветрогенератора способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay.

Обсудить статью ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

Читайте также:  Солнечная батарея своими руками. Крутой мастер-класс (32 фото)
Ссылка на основную публикацию