Самодельный ветрогенератор с диаметром винта 1 метр

Эффективный винт для ветрового генератора

Основная часть ветрогенератора это винт, который и преобразует энергию ветра в механическую работу. Значит чем лучше винт, тем более больше и стабильнее ветрогенератор сможет вырабатывать электричества.

Создавая винт автор хотел сделать его и быстроходным и с хорошим стартовым моментом, для этого он даже использовал специализированную программу по расчету коэффициента эффективности.

Материалы использованные для создания винта:
1) профнастил толщина 0.6 мм
2) болгарка
3) молоток
4) плоскогубцы
5) ножницы по металлу

Рассмотрим более подробно основные моменты работы над созданием винта.

Для начала он приступил к основным расчетам. Сначала были испытаны трубы диаметром 110 и 160 мм, так как они имелись в наличии в у автора, но при хороших быстроходных качествах от них не удавалось добиться достаточного стартового момента. Тогда он решил проверить какой именно диаметр будет наиболее приемлемым со стороны программы. Расчеты показали что наилучший коэффициент имеют трубы из ПВХ диаметром 250 и 315 мм. Они имеют отличные показатели как быстроходности, так и стартового момента.

Но так как труб такого диаметра не было и найти их довольно сложно, то он решил сделать лопасти из жести, которая осталась от обшивки дома профнастилом. Предварительно были совершены расчеты с винтом из 315-ой трубы в программе. Винт состоял из трех лопастей и получался диаметром около 1.5 метра. По расчетам быстроходность такого винта получалась с высоким КИЭВ 5-7, а стартовый момент при ветре в 5 мс был равен 0.25 Нм.

Ниже предоставлены выдержки из программы по расчету эффективности лопастей:

Ниже представлены все основные расчеты и данные о размерах в миллиметрах, исходя из которых приступил к изготовлению лопастей будущего винта.

Из обрезков настила были выбраны наиболее подходящие куски в количестве трех штук и обработаны болгаркой до 75 см. При помощи молотка профилю был предан вид гладкого листа, а тыльная кромка сразу подгибалась с захватом в 10 мм.

Далее на полученных листах автор произвел разметку линии фронта работ, по которой в последствии и были вырезаны лопасти. К основным размерам был добавлен один сантиметр, так как автор решил подогнуть края дабы придать жесткость конструкции. На фотографиях ниже представлена линия по которой будет происходить подгиб металла. Толщина жести получилась около 0.6 мм, что позволило справляться ножницами по металлу, а не болгаркой, благодаря чему лопасти получились более ровными.

Для жесткости кромки лопастей были подогнуты. Делалось это при помощи плоскогубцев с последующим постукиванием молотком.

Как видно лопасти еще плоские, поэтому автор приступил к созданию изгиба.

При помощи продольного простукивания молотком лопастям была предана форма желобов формой похожих на 315-ую трубу. Для визуального понимания он нарисовал круг диаметром 320 мм и ориентировался по нему при манипуляциях с формой лопастей. Так же были просверлены отверстия диаметром 6 мм для последующей сборки винта.

После установки этого винта, он сразу же показал себя с лучшей стороны. При скорости ветра в 3-5 мс он отлично набирал обороты и моментально отзывался на изменение ветра. До этого винты установленные на генератор либо периодически останавливались, либо не имели достаточного количества оборотов для выдачи стабильного тока.

Теперь зарядка стала практически постоянной, сила тока от 0.5-1 А и постоянно увеличивается до 2 А. Из-за быстроходности зарядка не прекращается, даже при слабом ветре. Таким образом автор нашел отличный выход для постройки надежного и стабильного винта для ветряка из подручных средств, чего он и добивался. Эта инструкция может помочь вам, если вы так же испытываете затруднения с поиском больших ПВХ труб в вашем регионе.

Точка J

Обзоры и рейтинги статьи

Изготовление лопастей для ветрогенератора своими руками

Использование альтернативных источников энергии – один из основных трендов нашего времени. Чистая и доступная энергия ветра может преобразовываться в электричество даже у вас дома, если построить ветряк и соединить его с генератором.

Соорудить лопасти для ветрогенератора своими руками можно из обычных материалов, не используя специального оборудования. Узнайте, какая форма лопастей эффективнее, и подберите подходящий чертеж для ветровой электростанции.

  • Как работает простой ветрогенератор
  • Какая форма лопасти является оптимальной
  • Из чего делают лопасти в домашних условиях
    • Канализационные трубы из поливинилхлорида
    • Алюминий — тонкий, легкий и дорогой
    • Стекловолокно или стеклоткань — для профессионалов
    • Дешево и сердито: деревянная деталь для ветроколеса
  • Чертежи и примеры лопастей
  • Зачем нужна балансировка ветряка
  • Выводы и полезное видео по теме

Как работает простой ветрогенератор

Ветрогенератор – прибор, позволяющий преобразовывать энергию ветра в электричество.

Принцип работы его заключается в том, что ветер вращает лопасти, приводит в движение вал, по которому вращение поступает на генератор через редуктор, увеличивающий скорость.

Подразделяют две основные разновидности ветряных генераторов:

Вертикально ориентированные модели построены так, чтобы ось пропеллера была расположена перпендикулярно земле. Таким образом, любое перемещение воздушных масс, независимо от направления, приводит конструкцию в движение.

Горизонтальный ветрогенератор напоминает флюгер. Чтобы лопасти вращались, конструкция должна быть повернута в нужную сторону, в зависимости от направления движения воздуха. Для контроля и улавливания изменений направления ветра устанавливают специальные приборы. КПД при таком расположении винта значительно выше, чем при вертикальной ориентации. В бытовом применении рациональней использовать ветрогенераторы этого типа.

Какая форма лопасти является оптимальной

Один из главных элементов ветрогенератора – комплект лопастей. Существует ряд факторов, связанных с этими деталями, которые сказываются на эффективности ветряка:

Если вы решили сконструировать лопасти для самодельного ветряка, обязательно нужно учитывать все эти параметры. Некоторые полагают, что чем больше крыльев на винте генератора, тем больше энергии ветра можно получить. Другими словами, чем больше, тем лучше.

Однако, это далеко не так. Каждая отдельная часть движется, преодолевая сопротивление воздуха. Таким образом, большое количество лопастей на винте требует большей силы ветра для совершения одного оборота. Кроме того, слишком много широких крыльев могут стать причиной образования так называемой «воздушной шапки» перед винтом, когда воздушный поток не проходит сквозь ветряк, а огибает его.

Самым эффективным является однолопастной ветрогенератор. Но построить и сбалансировать его своими руками очень сложно. Конструкция получается ненадежная, хоть и с высоким коэффициентом полезного действия. По опыту многих пользователей и производителей ветряков, самой оптимальной моделью является трехлопастная.

Правильно подобранная форма лопасти для ветрогенератора является фундаментом его хорошей работы. Для домашнего изготовления подходят такие варианты:

  • парусного типа;
  • крыльчатого типа.

Лопасти парусного типа представляют собой простые широкие полосы, как на ветряной мельнице. Эта модель наиболее очевидна и проста в изготовлении. Однако, ее КПД настолько мал, что эта форма практически не применяется в современных ветрогенераторах. Коэффициент полезного действия в данном случае составляет около 10-12%.

Гораздо более эффективная форма – лопасти крыльчатого профиля. Здесь задействованы принципы аэродинамики, которые поднимают в воздух огромные самолеты. Винт такой формы легче приводится в движение и вращается быстрее. Обтекание воздухом значительно сокращает сопротивление, которое встречает на своем пути ветряк.

КПД этой модели достигает значения 30-35%. Хорошая новость заключается в том, что построить крыльчатую лопасть можно и своими руками с применением минимума инструментов. Все основные расчеты и чертежи можно легко адаптировать под свой ветряк и пользоваться бесплатной и чистой энергией ветра без ограничений.

Из чего делают лопасти в домашних условиях

Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.

Канализационные трубы из поливинилхлорида

Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.

К преимуществам такого метода относят:

  • невысокую цену;
  • доступность в любом регионе;
  • простоту работы;
  • большое количество схем и чертежей в интернете, большой опыт использования.

Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.

Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.

Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.

Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную за 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.

Алюминий — тонкий, легкий и дорогой

Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.

Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.

Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.

После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.

Стекловолокно или стеклоткань — для профессионалов

Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.

Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев. Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.

Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.

Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.

Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.

Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.

Дешево и сердито: деревянная деталь для ветроколеса

Деревянная лопасть – дедовский метод, который легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.

Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.

Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.

КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.

Читайте также:  Тепловой насос Френетта своими руками

Чертежи и примеры лопастей

Сделать правильный расчет винта ветрогенератора, не зная основных параметров, которые отображаются в формуле, а так же не имея понятия, как эти параметры влияют на работу ветряка, очень сложно. Лучше не тратить свое время, если желания вникать в основы аэродинамики нет. Готовые чертежи-схемы с заданными показателями помогут подобрать подходящую лопасть для ветряной электростанции.

Подобный небольшой ветрогенератор не сможет обеспечить вас высокой мощностью. Скорей всего, вы вряд ли сможете выжать из этой конструкции больше 50 Вт. Однако двухлопастной винт из легкой и тонкой ПВХ-трубы даст высокую скорость вращения и обеспечит работу ветряка даже при небольшом ветре.

Трехлопастной винт такой формы может быть использован для более мощных агрегатов, примерно 150 Вт при 12 В. Диаметр всего винта в этой модели достигает 1,5 м. Ветроколесо будет вращаться быстро и легко запускаться в движение. Ветряк с тремя крыльями встречается в домашних электростанциях чаще всего.

Такой пятилопастной винт сможет выдавать до 225 оборотов в минуту при расчетной скорости ветра 5 м/с. Чтобы построить лопасть по предложенным чертежам, нужно перенести координаты каждой точки из колонок «Координаты лекала фронт/тыл» на поверхность пластиковой канализационной трубы.

По предложенной ниже таблице можно рассчитать диаметр ветряка с 2-16 лопастями. При этом можно подбирать размер с учетом желаемой мощности на выходе.

Как показывает практика, обслуживать ветрогенератор больше 2 метров в диаметре достаточно сложно. Если в соответствии с таблицей вам необходим ветряк большего размера, подумайте над увеличением числа лопастей.

Зачем нужна балансировка ветряка

Балансировка лопастей ветрогенератора поможет сделать его работу максимально эффективной. Для осуществления балансировки нужно найти помещение, где нет ветра или сквозняка. Разумеется, для ветроколеса больше 2 м в диаметре найти такое помещение будет сложно.

Лопасти собираются в готовую конструкцию и устанавливаются в рабочее положение. Ось должна располагаться строго горизонтально, по уровню. Плоскость, в которой будет вращаться винт, должна быть выставлена строго вертикально, перпендикулярно оси и уровню земли.

Винт, который не движется, нужно повернуть на 360/х градусов, где х = количество лопастей. В идеале сбалансированный ветряк не будет отклоняться ни на 1 градус, а останется неподвижным. Если лопасть повернулась под собственным весом, ее нужно немного подправить, уменьшить вес с одной стороны, устранить отклонение от оси.

Также важно проконтролировать, чтобы все части вертелись строго в одной плоскости. Для проверки на расстоянии 2 мм с обеих сторон одной из лопастей устанавливают контрольные пластины. Во время движения ни одна часть винта не должна коснуться пластины.

Выводы и полезное видео по теме

Построить ветряк своими руками из подручных материалов вполне возможно. Если начать с более простых моделей, то и первая попытка, вероятно, станет успешной. С опытом беритесь за более сложные задумки, чтобы получить максимально эффективный и мощный ветрогенератор.

Как сделать ветряк из труб ПВХ:

Ветрогенератор своими руками:

Ветряк из оцинкованной стали:

Если вы хотите использовать чистую и безопасную энергию ветра для бытовых нужд и не планируете тратить огромные деньги на покупку дорогостоящего оборудования, самодельные лопасти из обычных материалов будут подходящей идеей. Не бойтесь экспериментов, и вам удастся еще больше усовершенствовать существующие модели винтов ветряка.

Как сделать ветрогенератор своими руками

Человек использует ветер уже несколько тысяч лет. Скорей всего, это началось с изобретения паруса. Несколько позже ветер стали использовать для привода ветряных мельниц, а с прошлого века — для выработки электричества. Получение энергии от ветросиловых установок является чрезвычайно заманчивой, но и весьма сложной технической задачей. В настоящее время имеется несколько вариантов технических конструкций ветрогенератора своими руками, хорошо зарекомендовавших себя на практике.

Ветер — поток воздушных масс над земной поверхностью. Он возникает из-за неравномерного нагрева этой поверхности солнечными лучами. Воздух из областей повышенного давления перемещается в направлении областей низкого давления. На скорость ветра влияют характер земной поверхности, протяжённость воздушного потока над этой поверхностью и различные природные и искусственные препятствия, такие как холмы, высокие деревья, здания. Среднегодовая скорость ветра для конкретной местности характеризует энергетический ветровой потенциал района. Эту скорость определяет среднеарифметическое значение скоростей за периоды, например, за месяц, сезон и год. Россия располагает значительными ветровыми ресурсами. Особенно они велики по всему морскому побережью и на территории юга нашей страны (рис. 1). Регионы со среднегодовой скоростью ветра 3,5-6 м/с и выше считаются вполне перспективными для строительства ветроэлектрических установок (ВЭУ).

Если выяснится, что в месте предполагаемой установки ветрогенератора нет достаточно сильных ветров, то и не будет никакого смысла в её сооружении.

Второй вопрос — насколько мощным сделать ветрогенератор. Очевидно, что все энергетические проблемы исключительно с его помощью решить не удастся. Скорость ветра изменчива не только в зависимости от сезона, но и от времени суток, поэтому энергию необходимо запасать и бережно её расходовать. А лучше всего использовать различные источники совместно, например, ветряк и солнечные батареи (рис. 2).

Правда, многие самодельщики готовы собирать ветровую установку своими руками даже только для того, чтобы заряжать аккумуляторы своего карманного гаджета. Это будет просто хобби. Но вот если вообще нет электроэнергии и перспективы её туда провести совершенно нереальны, то постройка ветрогенератора своими руками окажется полезной.

Расчет установки ветрогенератора

Простейшие расчёты помогут определить реальные возможности установки. Существует показатель, который позволит оценить, какую часть энергии воздушного потока можно использовать с помощью ветроколеса. Его называют коэффициентом использования энергии ветра (Е). Коэффициент использования энергии ветра Е зависит от типа ветродвигателя, качества его изготовления и других параметров. Лучшие быстроходные ветродвигатели с обтекаемыми аэродинамическими лопастями имеют значение Е = 0,43-0,47. Это означает, что ветроколесо такой ВЭУ может полезно использовать 43-47% энергии воздушного потока.

Максимальное теоретически вычисленное значение Е = 0,593, но на практике получить его невозможно.

Мощность ветроколеса на валу без учёта потерь в передачах и подшипниках можно подсчитать по формуле:

р — массовая плотность воздуха, равная при нормальных условиях 0,125 кг*с2/м4,
V — скорость ветра (м/с),
Р — ометаемая ветроколесом поверхность (м2),
Е — коэффициент использования энергии ветра.

Рассчитать площадь, ометаемую воздушным колесом, можно по формуле:

Для нормальных условий (температура — 15°С и давление — 760 мм рт.ст.) мощность можно рассчитать по упрощённым формулам в лошадиных силах и в киловаттах:

D — диаметр ветроколеса (м).

Сделать ветряк малого диаметра, стабильно работающий при малых ветрах, — сложная задача. Воздушный винт получает 75% энергии с кольцевой области ометания от 0,5 до 1,0 радиуса. В связи с этим наименьший диаметр пропеллера, выгодного с точки зрения использования ветра со скоростью 4 м/с, должен быть не менее 4,5 м. Для малых ветров предпочтительнее оказываются тихоходные многолопастные винты.

Для ветроэлектростанции применяют генераторы переменного или постоянного тока. В самодельных ВЭУ очень часто используют генератор от современного автомобиля. Несмотря на то что они вырабатывают переменный ток, любой из них не очень подходит для этой цели, так как требует высоких оборотов и подмагничивания обмотки возбуждения. А генераторы постоянного тока вообще плохо работают при медленном вращении и даже на номинальных оборотах имеют небольшую мощность (100-200 Вт).

Самодельный ветрогенератор из асинхронного двигателя

Гораздо лучшие результаты можно получить с помощью переделанного асинхронного электродвигателя, снабдив его ротор постоянными магнитами. Эти двигатели не имеют никакой обмотки в роторе, а только металлические пластины. Если к ротору прикрепить постоянные магниты, то получится трёхфазный генератор удивительно прочной и долговечной конструкции, способный отдавать токи в десятки ампер при низких скоростях вращения.

Однако при высоких оборотах из-за большого тока начинают греться обмотки статора. В таком случае провод этих обмоток лучше заменить на другой — с большим сечением.

В трёхфазном генераторе переменного тока имеются 3 обмотки, соединить которые можно по схеме «треугольник» или «звезда». Треугольное соединение позволяет получить большой ток при меньшем напряжении, чем у соединения в звезду. Звезда наоборот даёт большее напряжение при меньшем токе. Трёхфазные генераторы намного эффективнее однофазных и генераторов постоянного тока. Это доказал ещё Никола Тесла.

Любой ветроагрегат требует защиты от шквальных порывов ветра. Вместо сложной системы поворота лопастей всё чаще используют механизм разворота всего колеса под углом к воздушному потоку.

Преобразование переменного тока в постоянный (который необходим для зарядки аккумуляторов) легко произвести с помощью полупроводниковых диодов, включённых по мостовой схеме (см. рис. 3). Если же вам потребуется напряжение стандартной электросети 220 В частотой 50 Гц, то в качестве инвертора используйте обычный компьютерный блок бесперебойного питания. Новый блок стоит дорого, но поскольку нам потребуется лишь повышающий инвертор, то можно использовать и списанный. Достаточно к нему вместо внутреннего подсоединить аккумулятор ветряка. Мощности UPS 1000 или UPS 5000 будет более, чем достаточно.

Расчет лопастей ветрогенератора

Крепление лопастей к втулке позволяет перемещением их балансировать ветровое колесо в сборе.

Примером простейшей, но вполне работоспособной ВЭУ может служить конструкция французского умельца (фото 1). Его шестилопастное ветряное колесо, лопасти которого хомутами прикреплены к металлическим пруткам (фото 2), соединённым электросваркой с общей втулкой (рис. 4), насаживается на ось электрогенератора.

Аэродинамический руль устанавливает колесо строго к ветровому потоку.

Для автоматической ориентации лопастей на ветер служит аэродинамический руль, прикреплённый к поворотной трубе силового узла установки (фото 3). Подшипники поворотного устройства обеспечивают поворот ветроколеса с генератором на опорной мачте при изменении направления ветра.

Лопасти и аэродинамический руль выпилены из фанеры толщиной 10 мм. Консоль кронштейна крепления пера руля при порывистом ветре испытывает большие нагрузки, и потому её изготовили из заготовки толщиной в 15 мм. Готовые лопасти и руль мы видим на фото 4. Выкройки этих деталей представлены на рис. 5-8. Хотя лопасти и имеют плоский профиль, но их кромки должны быть обработаны в соответствии с рисунками.

Фото 6.Доработка ротора асинхронного электромотора позволяет получить эффективный генератор переменного тока для ветроустановки.

Фото 7. Переделать ротор можно двумя способами. Первый – это наклеить магниты на механически обработанный ротор двигателя. И второй способ – из стальной ленты по деревянной оправке сделать новый ротор, на который так же наклеить магниты.

Ветровое колесо имеет 6 лопастей. Однако всего их было изготовлено 9. Три коротких лопасти необходимы для замены трёх полноразмерных лопастей на время сезона сильных ветров (фото 5). Балансировку ветрового колеса можно произвести перемещением лопастей по пруткам от втулки или ближе к ней.

Пожалуй, самой трудоёмкой будет переделка асинхронного электродвигателя в трёхфазный генератор. Двигатель мощностью 150 Вт и выше, рассчитанный на работу от сети 220 В при частоте 50-60 Гц, после переделки сможет в качестве генератора ветроустановки отдавать в нагрузку ток до десятка ампер при напряжении не ниже 12 В.

Главной переделке в будущем генераторе подвергается ротор. После разборки электромотора тело ротора протачивают и фрезеровкой пазов разделяют на несколько сегментов. В нашем случае их шесть. На каждом сегменте размещены постоянные магниты (см. рис. 9). Их прикрепляют по 6 шт. на каждый полюс ротора (всего их 36) прочным эпоксидным клеем (фото 6). Количество полюсов магнитов на роторе не должно быть кратным количеству катушек на статоре. Это исключит трудный пуск ветроколеса из-за «залипання» магнитов ротора на статорных полюсах.

Есть и второй способ переделки ротора — это сделать из стальной полосы нужного диаметра цилиндр (по деревянной оправке) и на него наклеить магниты (фото 7).

Собирать обмотки полюсов статора при работе генератора на зарядку аккумулятора лучше в треугольник, а при прямой нагрузке большим током — в звезду. Катушки статора в любом случае лучше перемотать проводом большего сечения (фото 8). Это уменьшит потери на нагрев.

Ветроэлектрические установки, работающие параллельно с другими установками, использующими возобновляемые источники энергии (солнечные батареи, гидрогенераторы, тепловые насосы и пр.), вполне могут обеспечить энергоснабжение жилого дома или небольшого хозяйства. При наличии резерва в виде электроагрегата с бензодвигателем временное снижение альтернативной энергии может быть компенсировано в любой момент. Подобные системы приносят большую экономию энергии, получаемой от традиционных источников.

Читайте также:  Самодельный гальванический элемент для автономного питания

Инструменты

При наличии дома, старого кулера от компьютера, можно соорудить отличную ветровую установку, которая будет производить электричество. Мини ветрогенератор – отличная вещь, особенно для местности с частыми и сильными ветрами. Об особенностях и технологии его изготовления узнаем далее.

Оглавление:

Как сделать мини ветрогенератор своими руками

Начинать работу над мини ветрогенератором следует с изготовления чертежей будущей ветровой установки. Кроме того, следует подготовить материалы в виде:

  • толстой бутылки из пластика;
  • старого охладительного кулера или вентилятора, от его размеров и мощности, напрямую зависит мощность самого генератора;
  • слаботочный провод в количестве 5-8 метров;
  • деревянный брус, сечение и размеры которого определяются индивидуально;
  • две стальные трубы, которые заходят одна в одну;
  • диоды;
  • клей на эпоксидной основе и супер клеевой состав;
  • крепежные элементы в виде затяжных галстуков;
  • старый СД диск.

Прежде всего, начать работу нужно с поиска подходящего охладительного механизма. Предлагаем использовать кулер от старого компьютера. Изначально кулер разбирается, пропеллерная его часть находится на электрическом двигателе. Чаще всего, он фиксируется на стопорном кольце, оно находится под уплотнителем из резины. После демонтажа кольцевого уплотнителя, снимите лопасти на вентиляторе.

Далее следует процесс пайки кабелей, обеспечивающих работу генераторной установки. На медных катушках вентилятора находятся два соединения для проводов, они являются коннекторами на катушках. Один из участков отличается наличием подсоединяемого провода из меди, а второй имеет два провода. Два провода соединяются с ножками одного провода методом пайки.

На следующем этапе создания небольшого ветрогенератора, выполняется создание выпрямителя. Основной функцией данного прибора является преобразование переменного тока в постоянный. Для этих целей потребуется наличие четырех диодов, они обрезаются таким образом, чтобы одна пара от черной отметки осталась с 10 см отрезком. Длинный конец диода загибается, таким образом, получится п-образное соединение. Все диоды соединяются между собой методом спаивания. Для тестирования ветрового генератора, подсоедините к нему диоды, если светодиод работает, то ветрогенератор функционирует правильно. Наружная пластиковая часть кулера удаляется, для обработки всех неровностей, используйте нож.

Далее следует процесс изготовления лопасти ветрогенератора. Для изготовления лопастей, используйте старую бутылку, например, из-под шампуня. Верхняя и нижняя части бутылки срезаются. Получится изделие цилиндрической формы, его нужно разрезать вдоль. Предварительно изготовьте чертеж в виде лопастей, согласно ему, вырежьте из бутылки лопасти для ветрогенератора. Учтите, что конечная часть лопастей должна быть срезана под углом в сто двадцать градусов. Далее следует процесс фиксации лопастей на кулере.

На следующем этапе выполняется изготовление хвостовика ветряка. Для фиксации мотора используется брус, выполненный из дерева. Его вращение выполняется с помощью стальных трубок. Для изготовления хвостовика используйте ненужный диск. Деревянный брусок оборудуется сквозным отверстием, его диаметр должен быть чуть больше диаметра стальной трубы. При не плотной установке трубки, зафиксируйте ее с помощью клея на эпоксидной основе. На конечной части бруска обустраивается пропил для монтажа диска. Место, на котором соединяется мотор с бруском, необходимо также обработать клеевым составом. Провода и пайку, рекомендуется также покрыть клеем, для предотвращения появления коррозии.

Далее следует процесс, на котором изготавливается опора. Для ее сооружения используйте две трубки. Одна из них зафиксирована на деревянном бруске, а вторая устанавливается в соотношении с вращением. Для их соединения можно использовать подшипники, а для улучшения скольжения воспользуйтесь фторопластом.

Мини ветрогенератор своими руками из моторчика

Предлагаем вариант изготовления ветрогенератора от мотора из старого принтера. Данная модель отличается средней производительностью и работает, даже при малейшем ветре. Для работы ветрогенератора потребуется также аккумулятор, максимальная мощность прибора составляет 100мА.

В качестве основной детали ветряка используется моторчик, от неработающего принтера струйного типа. Предварительно принтер необходимо разобрать и вынуть из него мотор.

Для фиксаторов лопастей используется транзистор. Его необходимо просверлить в соотношении с размером устанавливаемого вала. Далее все детали фиксируются с помощью клеевого состава на эпоксидной основе. Кроме того, с помощью данного состава обеспечивается защита особо важных частей устройства от влаги и непогоды.

Используя отрезок пластиковой трубы, диаметром около 12 см, вырежьте лопасти для ветряка. Для этих целей используется отрезная машинка. Оптимальное значение ширины детали составляет 90 мм, отверстия сооружаются специальным приспособлением, а затем вал устанавливается на генераторный мотор с помощью винтовых соединений.

В качестве основы для изготовления ветряка используется труба диаметром 55 мм. Для изготовления хвоста используйте фанеру. Мотор устанавливается внутри трубы, Далее выполняется сооружение выпрямителя. Так как мотор не воспроизводит большое количество электричества при небольшом ветре. Таким образом, удается применить схему удвоения, включаемую последовательно.

Схему устанавливается в полиэтиленовый пакет и устанавливается во внутрь трубы вместе с выпрямителем. Далее выполняется фиксация мотора с помощью проволоки. Кроме того, все отверстия заделываются силиконовым пистолетом. Одно отверстие используется для стока воды, а второе для испарения конденсатных масс.

Для фиксации хвоста ветрового генератора используется болт и проволока. Таким образом, удастся надежно зафиксировать установку. Следите за жесткостью полученных соединений.

Для того, чтобы соорудить мачту для установки ветряка используйте брусья, соединенные между собой с помощью саморезов. Зафиксируйте ветряк на мачте и установите на предварительно отведенное место. С помощью такой установки удается зарядить мобильный телефон или организовать подсветку.

Делаем мини ветрогенератор своими руками

Перед началом работы над ветровым генератором, необходимо определиться с количеством ветров в вашем климатическом регионе. Серо-зеленые – безветренные зоны подразумевают использование исключительно ветрогенераторов парусного типа. При необходимости в обеспечении постоянного тока, к ним добавляется прибор в виде бустрера. Данное устройство выполняет функцию выпрямителя, а также стабилизирует напряжение. Также потребуется наличие зарядного устройства, высокомощной батареи, преобразователя. Стоимость изготовления данной установки запредельно высокая и не всегда оправдывается.

В зонах со слабыми ветрами, обозначенных желтым цветом, возможен вариант изготовления ветрогенератора тихоходного типа. Данные устройства отличаются хорошей производительностью.

Для ветреных регионов подойдут любые ветровые установки. Чаще всего, используются приборы вертикального типа – лопастники или парусники.

Для того, чтобы выполнить расчеты по определению мощности ветровой установки, необходимо учесть такие факторы как:

  • постоянная скорость ветра в том или ином регионе;
  • воздух является сплошной средой, поэтому от качества и производительности ротора зависит мощность ветрогенератора;
  • воздушные потоки обладают кинетической энергией.

Предлагаем рассмотреть особенности парусных ветрогенераторов. Данные устройства изготавливают из износостойкого материала, которые отлично противостоят ветрам. Если вы решили изготовить такую установку самостоятельно, то необходимо прежде всего, провести ряд подсчетов, связанных с данными приборами.

В качестве материалом для изготовления ветрогенератора, можно использовать различные железки, которые завалялись у вас дома. Самый дорогостоящий элемент – аккумулятор. Его мощность определяет размеры установки и ее производительность.

Самодельный ветрогенератор аксиального типа изготовить в домашних условиях довольно просто. Начинать работу следует с мачты. Для ее изготовления чаще всего используют трубы, по диаметру они должны быть разными. Для соединения труб между собой используется сварочный аппарат. Мачта устанавливается на забетонированную площадку. При этом, несколько ее метров углубляются в землю, для получения устойчивой конструкции. На отдельных деталях установки нужно наклеить два магнита, Для более прочной фиксации они дополнительно заливаются с помощью эпоксидной смолы.

Далее следует процесс изготовления формы и фанеры. Для этих целей используются катушки, соединенные между собой фазой. Процесс изготовления статора выглядит таким образом: на ранее вырезанный квадрат из фанеры устанавливается вощеная бумага. Далее следует монтаж фанеры, на которой предварительно вырезаны отверстия под монтаж статора. Далее следует процесс монтажа кружка из стеклоткани и устанавливаются катушки.

После этого, производится извлечение готового статора из ранее подготовленной формы. Для изготовления винта используется дюралюминиевая труба. Винт изготавливается диаметром в один метр. Для вырезания лопастей используйте электрический лобзик. В центральной части установки оборудуйте отверстие, с помощью которого будет фиксироваться винт на генераторе.

Ветрогенератор имеет смещенный по отношению к оси хвостовой элемент. При сильных порывах ветра происходит давление на поверхность ветрового генератора и он смещается в сторону. Данная схема позволяет защитить устройство от сильных ветров. Данная модель ветрогенератора позволяет вырабатывать достаточное количество энергии для обеспечения уличной подсветки дома. Сделать ветрогенератор не сложно, главное условие получения качественного прибора – сопоставление силы ветра в вашем регионе с его мощностью.

Технология изготовления мини ветрогенератора своими руками

Для ветрогенератора изготовления необходим минимальный запас инструментов и материалов. Предлагаем вариант сооружения мини ветрогенератора для дачи. Данный прибор способен обеспечить небольшой дом с минимальным количеством электроприборов – электричеством.

Для изготовления такого ветрогенератора потребуется прежде всего диск, на котором устанавливаются магниты. Далее следует процесс наматывания медных катушек, которые заливаются с помощью смолы. Для осуществления вращения, генератор устанавливается на ранее предусмотренном основании.

Данные ветрогенераторы отличаются хорошей производительностью и качественной работой. Соотношение магнита с полюсами составляет два к трем, если ветрогенератор имеет две фазы, для однофазного устройства достаточно соотношение один к трем. Все полюса соотносятся между собой в зависимости от используемых вариантов катушек.

Мощность ветрового генератора определяется прежде всего размерами используемых в его конструировании магнитов. В качестве мачты под генератор достаточно использования стальной трубы или бревна. Аккумуляторы не обязательно использовать новые, сгодятся и любые, подходящие по мощности приборы.

Возможен вариант изготовления сразу нескольких ветрогенераторов, при этом, каждый из них будет выполнять определенные функции – один обеспечивает жилище светом, второй отвечает за работу телевизора, а третий – за ночное освещение.

Ветряк своими руками за 150$

Недавно у меня возникла идея вырабатывать свою электроэнергию для дома. Это не было большой необходимостью, но мой интерес возрос к данной теме когда я прочитал статью про сборку ветряка с мотором от беговой дорожки и ПХВ-труб. Предварительно прикинув по расходам – получалось около 150-200$ на ветряк, который мог бы вырабатывать приблизительно 50-250 Ватт электроэнергии (это выходит значительно дешевле, чем использовать солнечные батареи при той же выходной мощности). И в этой статье я поделюсь с вами моим опытом изготовления ветряка своими руками.

Видео

Перед тем как рассказать об изготовлении, посмотрите видео моего ветряка в действии. На видео показаны различные конфигурации лопастей.

Конфигурация с длинными и тонкими лопастями (наилучшее решение)

Шестилопастная конфигурация (маленькая скорость при старте и большой вращающий момент)

Конфигурация с широкими лопастями (хороший старт, но очень медленно крутится)

Как работает ветряк?

Любой ветряк, независимо от его размеров и предназначения, работает согласно следующим принципам:

Дует постоянный ветер.

Флюгер (хвост ветряка) поворачивается по ветру.

Лопасти, соединенные с генератором (напрямую или через редуктор) под силой ветра заставляют его вращаться.

Из-за вращения, генератор вырабатывает электричество.

Звучит не так уж и сложно, не правда ли? Итак перейдем к конкретике.

Инструмент

Для изготовления ветряка не нужен какой-либо специализированный инструмент. Я использовал следующие инструменты:
– ножовка
– дрель и сверла для нее
– рулетку
– разводной ключ
– газовый ключ
– транспортир
– наждачку (разной зернистости)

Необходимые детали

Моей задачей было сделать ветряк с минимально возможными затратами (т.к. я студент и ограничен в финансах). Итак, я взял готовое решение изготовления простого ветряка с интернета и еще больше упростил его. Все необходимые запчасти можно купить на любом строительном рынке или в магазине. Многие, возможно окажутся в вашем гараже или сарае.

Итак, вот что я использовал:
– лист металла 25х35см
– 1/4″ х 25 см трубку
– 1/4″ фланец
– 20-25мм квадратную трубу L=1м
– диск от пилы (для хаба)
– штифт (для соединения диска с осью мотора)
– два автомобильных хомута
– 8″ x 4″ ПХВ труба
– 30″ x 8″ ПХВ труба
– DC-мотор (генератор)
– болты, шайбы, гайки
– саморезы по металлу
– диоды на ток 10-40А (можно и больше)

Достать эти запчасти нет никаких проблем, кроме моторчика. Из интернета, наиболее популярным является вариант использования мотора фирмы «Ametek» от старых магнитофонов. При подборе генератора (мотора) выбирайте те, у которых наибольшее кол-во вольт на оборот. К примеру, моторчик «Ametek», который я использую выдает 30В при 325 об/мин, т.о. он прекрасно подходит для использования его в качестве генератора в ветряке. Также имейте в виду, что нужен моторчик не менее 12В, для инвертора или зарядки аккумулятора. В моей конструкции, при хорошем ветре, обороты легко достигают значений в 300-400 об/мин.

Изготовление лопастей

Самой важной частью ветряка вероятно являются лопасти. Большинство, делают их из дерева или композитных материалов (стеклоткань и эпоксидка). Но я думаю, что реально их сделать из обычной водопроводной ПХВ-трубы (по эффективности они будут ничем не хуже). Перед тем как продолжить, немного теории о лопастях ветряка…
– чем длиннее лопасти, тем легче они крутятся в слабый ветер, но у них будет низкая скорость вращения.
– на концах лопастей вращение будет больше чем у основания, поэтому необходимо рассчитывать отношение скорости вращения лопастей к скорости ветра (TSR) при их изготовлении (например старые ветряные мельницы круглый год вращаются с постоянной скоростью 40 об/мин.)
– мощность, которую можно получить из энергии ветра, равна скорости ветра в третьей степени. Т.е. P=k*v^3, где k-постоянная ветряка, v-скорость ветра.
– согласно закону Беца, только

Читайте также:  Магнитная лодка своими руками

59.3% энергии можно получить от ветра. Т.е. в реальности наша формула примет вид: . P=0.593*k*v^3, где k – потери в ветрогенераторе на механические трения и т.п.
– чем выше ветряк установлен над уровнем земли, тем большее мощности можно извлечь из энергии ветра (рекомендуют 6-15 метров, но я установил на высоте 4 метра).

Сами лопасти изготовить из трубы очень легко. Нужно разрезать ПХВ-трубу на 3 секции: две по 150 град. и одна секция 60 град. (Я попытался изобразить это на рисунке очень приблизительно, в моей любимой CAD-программе –MS Paint 🙂 ). Красные линии – это лини реза. Чтобы удобнее было видеть линию реза по всей длине, рекомендую наклеить изоленту, скотч или просто бумагу. Из отрезка трубы 150 град. получатся широкие лопасти, которые будут легко крутиться в слабый ветер, но медленно. Опытным путем вы сами можете подобрать оптимальный угол, исходя из практики, он находится где то между 75-150 град. Для начала вырежьте широкие лопасти, а потом если нужно будет, то подрежьте их сделав более узкими. И запомните: «Семь раз отмерь – один раз отрежь».

После того, как все вырезано, я скруглил края. Если следовать аэродинамике, то нужно скруглить главную кромку и выровнять заднюю, но на практике, при использовании ПХВ-трубы я не увидел никакой разницы. В общем, вы можете сделать лопасти как эти (см. рис.)…

Изготовление узла крепления лопастей (Хаба)

Следующей задачей является изготовления узла крепления лопастей (ступица винта, хаб). Существует много различных способов изготовления. Я рекомендую сделать его из диска для пилы, его легко можно найти и он легко поддается сверлению. При помощи дрели просверлите 3 группы отверстий (по 2 в кадой) со смещением в 120 градусов (здесь вам может понадобиться транспортир). Расстояние в группе между двумя отверстиями – 1 дюйм (см. рис.).

Если в качестве хаба вы тоже планируете использовать диск от пилы, то не забудьте сточить все зубья на нем, иначе если он по какой-либо причине оторвется, то может нанести вред вам и окружающим.

После того, как все просверлено и мы уверены в надежности и безопасности хаба, то можете прикрутить лопасти к нему при помощи болтов и гаек. Обязательно поставьте гроверную шайбу или используйте гайку с уплотнителем.

Изготовление флюгера и шарнира для поворота

Теперь мы должны изготовить поворотную платформу, на которой будет установлен наш генератор. Для этого используем квадратную трубу, кусок ПХВ-трубы, фланец и небольшой лист металла. На рисунке ниже, можно посмотреть примерный набросок, как это будет выглядеть.

В первую очередь из куска железа необходимо вырезать хвост ветряка (флюгер). Форма не сильно важна и служит в основном для придания эстетического вида.

Далее, вдоль квадратной трубы мы делаем пропил (легче это сделать болгаркой). Длина не сильно важна, я рекомендую 20-25 см. Затем вставляем в прорезь наш флюгер и сверлим сквозные отверстия в трубе и листе. Закрепляем болтами.

Также необходимо предусмотреть какой-нибудь чехол для генератора, от непогоды. Для этого мы также используем пластиковую трубу. На рисунке ниже я думаю понятно как это будет выглядеть (боковое отверстие служит для электрических выводов).

Затем все красим и собираем до кучи. Прикрепляем мотор и чехол для него, к трубе хомутами. Снизу трубы, ближе к мотору, устанавливаем фланец и крепим его саморезами.

Любому ветряку необходима мачта (башня). Я изготовил ее из ПХВ-труб и различной фурнитуры для пластиковых труб. Для моей мачты понадобились: 1” ПХВ-труба, муфта для нее, 3 Т-образных отвода.

Мачта проста в изготовлении и получилось что-то похожее на это:

Далее, сажаем всю нашу конструкцию на получившуюся мачту.

Осталось только посадить наш хаб с лопастями на вал мотора и наш самодельный ветряк готов!

На рисунке ниже вы можете увидеть экспериментальную конструкцию с шестью лопастями. Она вращается практически в безветрие, но обороты не превышают 100 об/мин.

В батарейном отсеке, питание подается параллельно с солнечными батареями. Я использую 2 аккумулятора. Можно использовать обычные автомобильные аккумуляторы. Не забывайте припаять диоды между аккумуляторами и генератором ветряка, иначе ток от аккумуляторов пойдет в генератор.

В ходе экспериментов выяснилось, что более тонкие лопасти лучше работают при моих ветровых условиях. Поэтому я использовал большие белые лопасти (см. предыдущие фотографии) немного обрезав их. Результат — возросла скорость вращения (см. самое первое видео).

Как сделать горизонтальный ветряк своими руками: рекомендации экспертов

Дата публикации: 20 февраля 2019

За последние годы ветроэнергетика укрепила позиции среди других сфер отрасли. Доля этой сферы в общем объеме вырабатываемой энергии стабильно растет, есть сегодня целые страны, применяющие ветрогенераторы в качестве основных устройств для генерации электричества. Так, например, в Дании на 2015 год с помощью ветрогенераторов производилось 42% всего электричества в стране. Чуть отстают от этого государства Португалия (27%), Испания (20%), Ирландия (19%) и Германия (18,8%). Несомненным лидером по развитию ветроэнергетики в стране сегодня является Китай. По данным WindPower Intelligence, мощность установленных ветроэлектростанций в этой стране составляет 171,8 Гвт. За 2017 год страна ввела порядка 19,5 Гвт мощностей в эксплуатацию — это 37% от общего объема мировых мощностей.

Что касается России, то в отношении вопросов, связанных с энергией ветров, наша страна занимает срединное положение. С одной стороны — невероятно большая территория и равнины формируют достаточно ровные ветры. Но есть и другая сторона — ветры в России преимущественно медленные, низкопотенциальные. В некоторых районах, особенно малообжитых, наблюдаются буйные ветры, поэтому возможность построить на участке горизонтальный ветрогенератор своими руками для россиян кажется очень привлекательной.

Кроме того, можно сочетать ветровые установки с другими источниками альтернативной энергии, например, с солнечными электростанциями.

Горизонтальные ветрогенераторы: особенности конструкции

Превосходство горизонтальных ветряков над вертикальными в плане КПД особенно сильно проявляется, если речь идет о промышленных масштабах. Однако количество лопастей у горизонтальных ветряков ограничено, чтобы не увеличивать нагрузку на длинную мачту ветрогенератора. В случае, если речь идет о строительстве конструкции больших размеров, велика вероятность, что в какой-то момент давление на крыльчатку с множеством лопастей станет выше допустимых пределов, и в таком случае мачта просто не выдержит нагрузки, сломается. Именно поэтому промышленные турбины имеют обычно не более трех лопастей.

С конструкциями меньшего размера можно экспериментировать: например, в райцентре Михайловское были созданы горизонтальные ветряки, способные давать заряд при ветре три или даже два метра в секунду.

Еще одна особенность горизонтальных ветрогенераторов — возможность их наведения на ветер. Так как направление ветров над земной поверхностью нестабильно, ось вращения ветрогенератора должна быстро корректироваться при необходимости. Крупные конструкции устанавливаются чаще там, где преобладает единственное направление воздушных потоков, поэтому возможность корректирования оси вращения ограничена. В случае с небольшими ветряками используются специальные механизмы — хвостовики, которые корректируют положение ветрогенератора в автоматическом режиме.

Как построить горизонтальный ветряк своими руками

Чтобы обеспечить частный загородный дом энергией, будет достаточно устройства, мощность которого не превышает 1 кВт. При таких параметрах, согласно законодательству РФ, ветрогенератор можно приравнять к бытовому изделию, соответственно, можно смело строить горизонтальный ветряк своими руками, не заботясь о согласованиях в различных инстанциях — для монтажа подобных конструкций не требуются какие-либо сертификаты.

Пример плана строительства горизонтального ветряка

Если решили создать горизонтальный ветрогенератор своими руками, чертежи — первое, с чего следует начать. После того как на бумаге отдельные элементы сольются в одну понятную, логичную схему, можно приступать к строительству. Горизонтальные ветрогенераторы чаще имеют один и тот же состав элементов: высокая мачта (чтобы доставить ветряк на нужную высоту, где ветру не будут мешать ни строения, ни деревья), крыльчатки с парой-тройкой продолговатых пластиковых лопастей. Также конструкция предполагает использование сопутствующей аппаратуры, хвоста (стабилизатор, который в автоматическом режиме будет поворачивать крыльчатку в соответствии с воздушными потоками).

  1. Источник тока. Это могут быть автомобильные , но наиболее простой вариант — установка электродвигателей. Для домашнего ветрогенератора подойдут моторы постоянного тока с 30-100 Вольтами напряжения. Хорошие модели, подходящие для наших целей, выпускает компания Ametek, но можно посмотреть двигатели с подходящими параметрами и у других производителей. Эксплуатируясь в режиме генератора, такие моторы позволяют получить до 50% от заявленного напряжения. Проверить КПД мотора просто — подключите автомобильную лампу на 12 вольт к электрическим выходам и крутаните вал мотора: если технические показатели подходят, лампа загорится.
  2. Лопасти. Для изготовления лопастей можно использовать трубу из пластика. Диаметра в 15-20 см вполне хватит для наших целей. Из куска трубы длиной в 60 см можно изготовить четыре лопасти, но для самодельного ветрогенератора будет достаточно трех. Возьмите пластиковую трубу (например, сантехническую), отрежьте нужную длину плюс несколько сантиметров для обработки в дальнейшем. Получившийся обрезок нужно разделить на четыре одинаковые части — по линии оси. Каждый элемент следует вырезать по заранее подготовленному шаблону (шаблоны, чертежи в большом ассортименте представлены на просторах интернета, так что с поиском особых проблем не возникнет). Для того чтобы улучшить аэродинамические показатели лопастей, кромки необходимо аккуратно зашкурить. Лопасти готовы? Теперь их нужно прикрутить к шкиву из пары дисков, а тот, соответственно, — к валу мотора. После того, как лопасти закреплены, нужно торец ступицы закрыть обтекателем из пластика — это делается для того, чтобы улучшить аэродинамику.
  3. Основа для флюгера. Делается из деревянного бруса длиной до 600 мм. Если есть выбор, стоит предпочесть брусок из твердых пород древесины. С одной стороны бруска монтируется электродвигатель, с другой — «хвост» из металлического листа. На нижней поверхности бруска нужно закрепить трубчатый отвод для соединения с мачтой, и чуть подальше высверлить отверстие, через которое в будущем сможете вывести кабель ветряка и подключить его к накопителю электроэнергии.
  4. Основание. Для самодельной установки вполне нормальной будет высота в пять-семь метров. Для мачты отличным выбором станет металлическая труба диаметром 50-60 мм. Опору под нижнюю часть можно сделать из толстой фанеры, усилив конструкцию стальным листом. По краям тарелки нужно просверлить 4 отверстия диаметром 12 мм, через них будет осуществляться штыревое крепление к земле. На поверхность опорного основания прикрепляется конструкция из металлических фланцев, патрубков, тройника. Чтобы получить эффект шарнира, резьбовое сочленение между муфтой-тройником и уголками нужно выполнить не до конца — это даст возможность в любой момент спустить или поднять ветрогенератор. На трубчатый кусок надевается мачтовая труба большего диаметра до упора в ограничитель. Примерно таким же образом нужно соединить верхнюю часть мачты и флюгерную систему ветрогенератора, но в качестве ограничителя в этом случае будут выступать подшипники.
  5. Наконец, последний этап — ветрогенераторная установка поднимается на обозначенную высоту (благодаря шарнирному устройству сделать это будет нетрудно), и мачта фиксируется растяжками. Часто в качестве дополнительного оборудования при установке горизонтальных ветряков используются устройства защиты от шквальных ветров. И это оправдано: сильные порывы ветра способны приводить к скачкам напряжения, что может вывести крыльчатку из строя. Для экстренного торможения применяются устройства, которые отводят ось крыльчатки при шквальных порывах от направления ветра.

Еще один момент: горизонтальные ветрогенераторы нуждаются в регулярном обслуживании, так что, если вы решили сделать горизонтальный ветряк своими руками, уделите внимание выбору места расположения. С одной стороны, в этом месте ветер должен быть наиболее сильным и равномерным (такие условия соблюдаются при установке на высоте), с другой стороны, вы должны иметь доступ к конструкции для обслуживания. Не забудьте про необходимость обустройства молниеотвода и заземляющего контура — ваша предусмотрительность поможет защитить конструкцию от поражения молнией.

Ссылка на основную публикацию