Солнечный коллектор из алюминиевых банок своими руками

Солнечный коллектор из банок: чертежи, фото

Самодельный солнечный коллектор из пивных банок: чертежи, схема сборки, фото и видео где показан коллектор в работе.

В прошлой статье, мы подробно рассмотрели, как сделать солнечный коллектор своими руками, в качестве основного материала там были использованы пластиковые бутылки, на этот раз мы будем использовать алюминиевые пивные банки.
В конце этой статьи есть видео, где показан солнечный коллектор в работе, при температуре воздуха на улице – 10 градусов, в солнечную погоду коллектор выдавал в помещение тёплый воздух с температурой +51 градус. По сути вы получите бесплатный обогрев жилого помещения, но только в дневное время и разумеется в солнечную погоду.

Принцип работы солнечного коллектора из банок

Работает устройство по следующему принципу. Солнечные лучи попадают на адсорберы (в нашем случае это алюминиевые банки, окрашенные в чёрный матовый цвет), и передают им тепловую энергию.

Внутри банок постоянно циркулирует воздух, который получает в свою очередь тепловую энергию от разогретых адсорберов. Разогретый воздух из коллектора поступает во вентиляционному каналу в помещение и поднимает температуру в нём.

Схема солнечного нагревателя, показана на фото:

Также из помещения осуществляется забор охлаждённого воздуха обратно в коллектор.

Если вас заинтересовала эта самоделка, предлагаю посмотреть пошаговое изготовление солнечного коллектора.

Солнечный коллектор из пивных банок своими руками

Подготовим материалы, нам понадобятся:

  • Алюминиевые банки от пива или газированных напитков приблизительно 234 шт.
  • Лист фанеры 2,4 х 1,265 м толщиной не менее 10 мм.
  • Лист органического стекла или поликарбоната такого же размера.
  • Теплоизоляционный материал – пенополистирол или пенофол.
  • Клей герметик.
  • Матовая краска чёрного цвета.
  • Вентиляционные трубы.
  • Вентилятор.

Начинаем с подготовки банок, берём банку и увеличиваем отверстие в горлышке, а в донышке пробиваем 3 больших отверстия.

Таким образом нужно подготовить все банки, после чего банки нужно очень тщательно промыть от пищевых остатков тёплой водой с моющим средством, иначе они будут издавать неприятный запах при нагревании.

Теперь изготовим из банок трубы, для этого используем клей герметик. Можно сделать простое приспособление из двух досок которое позволит удерживать банки пока они будут клеиться.

Банки сажаем на клей соединяя горлышко одной банки с донышком другой, на каждую трубу понадобится по 13 стандартных алюминиевых банок, фиксируем трубу из банок в приспособлении и придавливаем небольшим грузом для лучшего контакта банок с клеем. Оставляем клеиться на сутки. Всего понадобится изготовить 18 труб.

Изготовим короб для коллектора. Вырезаем из листа фанеры заднюю стенку размером 2.4 х1.265 м.

Борта короба можно сделать из фанеры или из доски, дополнительно скрепив их между собой металлическими уголками. Два длинных борта имеют высоту 12 см, два коротких борта будут закругленными, высота по краям 12 см, а к центру 16 см.

Клеим утеплитель на стену короба.

Изготовим два держателя для труб из банок, нам понадобятся две полоски фанеры размером 126,5 х 12 см. С помощью электродрели и коронки по дереву на 54 мм сверлим отверстия под трубы.

Места под отверстия определяем приложив пивные банки вплотную друг к другу, а донышки обводим на фанере. Сверлим на каждой планке по 18 отверстий.

Примеряем трубы в коробе.

Трубы из банок нужно покрасить в чёрный цвет, это значительно увеличит поглощение солнечной энергии, красить нужно матовой краской, глянцевая будет отражать часть света.

Устанавливаем банки в короб, фиксируем опорными планками с отверстиями. В задней стенке короба сделаем верхнее и нижнее отверстия для воздуховодов, в нижнее будет заходить холодный воздух из помещения, а через верхнее будет выходить уже подогретый воздух. В входном отверстии устанавливаем вентилятор для более интенсивного воздухообмена в системе.

Фронтальную часть короба закрываем листом органического стекла или поликарбоната, крепим его на шурупы с термошайбами, предварительно уплотняем все щели герметиком.

Солнечный обогреватель монтируется на стене здания, воздуховоды проводятся в помещение, на рисунке показана схема установки воздушного коллектора.

По сути сделать солнечный коллектор можно из обычных алюминиевых банок, которые многие просто выбрасывают в мусор, при этом такая установка способна значительно сэкономить значительную часть расходов на отопление дома даже в зимний период.

Конечно такая гелиосистема не сможет полностью заменить систему отопления в доме и работает она только в дневное время суток, но её можно успешно использовать как дополнительное отопление, которое позволит значительно снизить потребление топлива для нагревательного котла в доме.

Предлагаю посмотреть интересное видео — процесс изготовления солнечного коллектора.

Солнечный коллектор сделанный своими руками из банок

Корпус для солнечного коллектора выполнен из дерева (фанера 15 мм), а его передняя панель из Оргстекла / Поликарбоната (вы можете также использовать обычное стекло), толщиной 3 мм. На задней части корпуса установлена ​​стекловата или пенопласт (20мм) в качестве изоляции. Гелиоприемник сделан из пустых банок из-под пива или других напитков, которые окрашены матовой черной краской, устойчивой к высоким температурам. Верхняя часть (крышка) банки специально разработана для обеспечения большей эффективности теплообмена между воздухом и поверхностью банки. (Просьба соблюдать технологию!).Когда солнечно, независимо от наружной температуры, воздух нагревается в банках очень быстро. Вентилятор возвращает воздух обратно с подогревом воздуха и в комнате тепло.

1. Готовим банки
Для начала мы собрали пустые банки, из которых составим панели солнечных батарей. Надо мыть банки сразу, как только они начинают распространять запахи. Внимание! Банки, как правило, сделаны из алюминия, но есть также некоторые из железа. Банки могут быть проверены с помощью магнита.

В днище каждой баночки вставляется пробойник (или гвоздь) и делаются аккуратные отверстия, хотя можно и просверлить дрелью. Затем вставляется суппорт и искажается в соответствии с рисунком.Вместо этого, Вы можете использовать специальные инструменты или большие крестовые отвертки.
Верхняя часть банки режется ножницами и изгибается так, чтобы получился «плавник». Его миссия заключается в содействии турбулентному потоку воздуха, чтобы собрать как можно больше тепла от нагретой стенки банки. (Просьба соблюдать технологию!) Всё это необходимо сделать до склеивания банок.

2. Удаляем жир и грязь с поверхности банки. Любое синтетическое средство обезжиривания будет служить достаточно хорошо для этой цели. Обезжиривание выполнять только на открытом воздухе или в хорошо проветриваемом помещении.

3. Садим банки на клей
Лента клея или силикона на банке устойчива к высоким температурам, по крайней мере до 200 ° C. Есть также продукты для склеивания, которые могут выдержать до 280 ° C или 300 ° C. Донышко банки и верх – идеально подходят друг к другу, аккуратно нанесите клей. Подробно разрез склеенных банок можно увидеть на рисункеЧтобы не промахнуться с вертикалью-горизонталью, лучше заранее сделать шаблон из двух досок, сбитых гвоздями под углом 90 градусов. Шаблон на рисунке, будет оказывать поддержку во время сушки банок в целях получения прямой трубы — солнечного тоннеля.
Труба должна быть зафиксирована, пока клей полностью высохнет.
4. Делаем каркас.
Коробки впускной и выпускной части сделаны из дерева или алюминия, толщиной 1 мм; зазоры в краях закрываются клейкой лентой или термостойким силиконом. Круглые отверстия по размеру банок выполнены специальной насадкой на дрель, или буром.5. Склеиваем коробку.
Клей сохнет очень медленно. Не забудьте дать ему высохнуть в течение по крайней мере 24 часов.Корпус Гелиоприемника сделан из дерева. Задняя часть коробки солнечного коллектора – из фанеры. В целях дальнейшего укрепления структуры вы можете сделать внутреннюю стенку.

6. Теплоизоляция солнечного коллектора.
Между разделами применяется изоляция – из стекловолокна или пенопласта. Все это закрывается крышкой из тонкой фанеры. Обратите особое внимание на изоляцию вокруг отверстия для входа и выхода воздуха в солнечном коллекторе.7. Крепление солнечного коллектора
Далее следует установить «уши» — крепеж, с помощью которого Коллектор крепится к стене, и защитить древесину защитной краской. Затем пустую коробку необходимо разместить на стене и наметить место, где будет отверстие для входа горячего воздуха и выхода холодного. В пробитые в стене отверстия вставляется труба из подручного материала.В конце работы Гелиоприемник окрашивается в черный цвет, и помещается в шкаф. Сверху покрывается оргстеклом, тщательно подогнанным к раме. Поликарбонат / Оргстекло должен быть (желательно) слегка выпуклый, чтобы получить большую прочность.
Важное примечание: Эта конструкция не может накапливать тепловую энергию, которую она производит. Если ночью прохладно, то Коллектор лучше закрыть, иначе дом будет остывать. Это может быть решено простым способом — путем установки клапана или задвижки, что позволит уменьшить потери тепла.

Дифференциальный термостат управляет работой вентилятора и включается/выключается. Этот термостат можно купить в магазинах электронных компонентов. Устройство имеет два датчика. Один установлен в верхнее отверстие для теплого воздуха, другой — внутри нижнего канала прохладного воздуха Коллектора. Если Вы грамотно установили порог температуры, солнечный коллектор может производить в среднем около 1-2 кВт энергии для отопления. Это в основном зависит от того, каков солнечный день.

Генеральная репетиция солнечных коллекторов была сделано во дворе перед установкой системы на дому. Это был солнечный (см. видео) зимний день, облаков нет. В качестве вентилятора был использован небольшой кулер, извлеченных из неисправного блока питания к компьютеру. После 10 минут солнечного света от солнечных коллекторов температура воздуха достигала 70 ° C!

После завершения установки коллекторов на стене дома, когда температура окружающего воздуха от -3 ° C, от солнечного коллектора выходило 3 м3/мин (3 кубических метров в минуту) нагретого воздуха. Температура нагретого воздуха поднялась до +72 ° C. Температура измерялась с помощью цифрового термометра. Для расчета мощности Коллектора солнечной тепловой энергии, мы взяли воздушный поток, а средняя температура воздуха — на выходе из блока. Расчетная сила, которую дал солнечный Коллектор, составляла примерно 1950 Вт (ватт), что почти в 3 л.с. (3 л.с.)!

Вывод: Учитывая, что результаты вполне удовлетворительны, можно сделать вывод, что эти самодельные солнечные панели, безусловно, стоит изготавливать. Коллектор, по крайней мере, может быть использованы для дополнительного пространства, в котором вы проживаете, и ваша задача состоит в разработке и понимании, какая экономия может быть достигнута.

Сообщества › Это интересно знать. › Блог › Солнечный коллектор из алюминиевых банок за 7 шагов…

Это невероятно простой и недорогой солнечный коллектор для дополнительного отопления дома, который нагревает воздух напрямую. Самое интересное, что солнечная панель почти полностью выполнена из пустых алюминиевых банок!

Корпус для солнечного коллектора выполнен из дерева (фанера 15 мм), а его передняя панель — из Оргстекла / Поликарбоната (вы можете также использовать обычное стекло), толщиной 3 мм. На задней части корпуса установлена стекловата или пенопласт (20мм) в качестве изоляции. Гелиоприемник сделан из пустых банок из-под пива или других напитков, которые окрашены матовой черной краской, устойчивой к высоким температурам. Верхняя часть (крышка) банки специально разработана для обеспечения большей эффективности теплообмена между воздухом и поверхностью банки. (Просьба соблюдать технологию!).

Когда солнечно, независимо от наружной температуры, воздух нагревается в банках очень быстро. Вентилятор возвращает воздух обратно с подогревом воздуха, и в комнате тепло.

1. Готовим банки

Для начала мы собрали пустые банки, из которых составим панели солнечных батарей. Надо мыть банки сразу, как только они начинают распространять запахи. Внимание! Банки, как правило, сделаны из алюминия, но есть также некоторые из железа. Банки могут быть проверены с помощью магнита.

В днище каждой баночки вставляется пробойник (или гвоздь) и делаются аккуратные отверстия, хотя можно и просверлить дрелью. Затем вставляется суппорт и искажается в соответствии с рисунком.

Читайте также:  Солнечная зарядка для литиевого аккумулятора своими руками

Вместо этого, Вы можете использовать специальные инструменты или большие крестовые отвертки. Верхняя часть банки режется ножницами и изгибается так, чтобы получился «плавник». Его миссия заключается в содействии турбулентному потоку воздуха, чтобы собрать как можно больше тепла от нагретой стенки банки. (Просьба соблюдать технологию!) Всё это необходимо сделать до склеивания банок.

2. Удаляем жир и грязь с поверхности банки

Любое синтетическое средство обезжиривания будет служить достаточно хорошо для этой цели. Обезжиривание выполнять только на открытом воздухе или в хорошо проветриваемом помещении.

3. Садим банки на клей

Лента клея или силикона на банке устойчива к высоким температурам, по крайней мере, до 200 °C. Есть также продукты для склеивания, которые могут выдержать до 280 ° C или 300 ° C. Донышко банки и верх идеально подходят друг к другу, аккуратно нанесите клей. Подробно разрез склеенных банок можно увидеть на рисунке.
Чтобы не промахнуться с вертикалью-горизонталью, лучше заранее сделать шаблон из двух досок, сбитых гвоздями под углом 90 градусов. Шаблон на рисунке, будет оказывать поддержку во время сушки банок в целях получения прямой трубы — солнечного тоннеля.

4. Делаем каркас

Коробки впускной и выпускной части сделаны из дерева или алюминия, толщиной 1 мм; зазоры в краях закрываются клейкой лентой или термостойким силиконом. Круглые отверстия по размеру банок выполнены специальной насадкой на дрель, или буром.

5. Склеиваем коробку

Клей сохнет очень медленно. Не забудьте дать ему высохнуть в течение хотя бы 24 часов. Корпус Гелиоприемника сделан из дерева. Задняя часть коробки солнечного коллектора – из фанеры. В целях дальнейшего укрепления структуры вы можете сделать внутреннюю стенку.

6. Теплоизоляция солнечного коллектора

Между разделами применяется изоляция – из стекловолокна или пенопласта. Все это закрывается крышкой из тонкой фанеры. Обратите особое внимание на изоляцию вокруг отверстия для входа и выхода воздуха в солнечном коллекторе.

7. Крепление солнечного коллектора

В конце работы Гелиоприемник окрашивается в черный цвет, и помещается в шкаф. Сверху покрывается оргстеклом, тщательно подогнанным к раме. Поликарбонат / Оргстекло должен быть (желательно) слегка выпуклый, чтобы получить большую прочность.

Эта конструкция не может накапливать тепловую энергию, которую она производит. Если ночью прохладно, то коллектор лучше закрыть, иначе дом будет остывать. Это может быть решено простым способом — путем установки клапана или задвижки, что позволит уменьшить потери тепла.
Дифференциальный термостат управляет работой вентилятора и включается/выключается. Этот термостат можно купить в магазинах электронных компонентов. Устройство имеет два датчика. Один установлен в верхнее отверстие для теплого воздуха, другой — внутри нижнего канала прохладного воздуха Коллектора. Если Вы грамотно установили порог температуры, солнечный коллектор может производить в среднем около 1-2 кВт энергии для отопления. Это в основном зависит от того, каков солнечный день.

Генеральная репетиция солнечных коллекторов была сделано во дворе перед установкой системы на дому. Это был солнечный зимний день, облаков нет. В качестве вентилятора был использован небольшой кулер, извлеченных из неисправного блока питания к компьютеру. После 10 минут солнечного света от солнечных коллекторов температура воздуха достигала 70 ° C!

После завершения установки коллекторов на стене дома, когда температура окружающего воздуха от -3 ° C, от солнечного коллектора выходило 3 м3/мин (3 кубических метров в минуту) нагретого воздуха. Температура нагретого воздуха поднялась до +72 ° C. Температура измерялась с помощью цифрового термометра. Для расчета мощности Коллектора солнечной тепловой энергии, мы взяли воздушный поток, а средняя температура воздуха — на выходе из блока. Расчетная сила, которую дал солнечный Коллектор, составляла примерно 1950 Вт (ватт), что почти в 3 л.с. (3 л.с.)!

Учитывая, что результаты вполне удовлетворительны, можно сделать вывод, что эти самодельные солнечные панели, безусловно, стоит изготавливать. Коллекторы, по крайней мере, может быть использованы для дополнительного пространства, в котором вы проживаете, и ваша задача состоит в разработке и понимании, какая экономия может быть достигнута.

Собираем cолнечный коллектор из банок из-под газировки

Грег Уэст

Материал подготовлен на основе перевода PDF файла.

В этом солнечном коллекторе в качестве абсорбера используются переработанные алюминиевые банки из-под газировки. Банки с вырезанными верхушками и донышками собираются в вертикальные трубы, через которые проходит воздух. Окрашенные в черный цвет банки сильнее нагреваются на солнце, и солнечное тепло передается через воздух, поднимающийся по трубам.

Я проделывал отверстия фрезой при помощи вертикального сверлильного станка, что само по себе стало полезным опытом. Чтобы набить руку, мне потребовалось некоторое время, а несколько банок чуть не попали в меня.

Вы удивитесь, как быстро пила может вырвать вещь прямо у вас из рук. Поэтому безопасность – прежде всего . Надевайте защитные очки и кожаные перчатки, а под них – несколько матерчатых перчаток. Банки быстро нагреваются, когда из них вырезают верхушки и донышки.

По впускному коллектору внизу воздухонагревателя воздух из помещения поступает во все трубы из банок. В выпускном коллекторе наверху собирается нагретый воздух, который выходит обратно в комнату. Сочетание равномерного поступления воздуха в коллектор и большой площади теплопередающей поверхности, которую образуют банки, способствует эффективности солнечного воздухонагревателя. Кроме того, мой коллектор имеет поликарбонатное покрытие «Твинуолл» (Twinwall) – вид двойного покрытия, сокращающий теплопотерю и, таким образом, повышающий эффективность работы прибора.

Итак, давайте начнем с самого начала. Прежде всего, мне хотелось бы поблагодарить парня, который зарегистрирован на Ютьюбе (YouTube) под ником «my2cents0». Он направил меня на венгерский Интернет – ресурс, где я нашел инженера, которого знаю только как Золи. Вообще Золи лучше говорит по-французски, чем по-венгерски. Я благодарю этого человека за его невероятное терпение ко мне. Я достал его до смерти за почти три месяца работы над этим проектом, пока не убедился, что я все сделал правильно.

Краткое описание

На столе вы видите мои банки, герметично склеенные друг с другом и соединенные с верхним и нижним коллекторами. Размеры моей теплообменной панели – 17 банок в ширину и 17 в высоту. Именно столько мне удалось втиснуть в изолированную коробку из полиизоциануратовой изоляционной плиты (полиизо) размером 4×8 футов (1,21×2,43 м). Таким и будет наружный размер воздухонагревателя. Длина крышек коллекторов составляет 44,5 дюйма (около 1,11 м), а их краев – 0,5 дюйма (1 см).

Отверстия в гребенке я сверлил диаметром 54 мм с расстоянием между их центрами 66 мм. В итоге я обнаружил, что трубы из банок слишком плотно прижаты друг к другу. Может быть, при 67-миллиметровом расстоянии между центрами отверстий этой трудности не возникло бы. В таком случае промежуток между краями отверстий составит 11-12 мм – так, думаю, трубы разместятся свободнее. В следующем коллекторе я сделаю 67-миллиметровое расстоянии между центрами отверстий. Отступите 10 мм от ободка на верхушке банки, выполните разметку и просверлите отверстие. Отверстия в донышках я делал диаметром 44 мм, а в верхушках – 51 мм. С верхушками нужно быть очень осторожными – фреза почти такого же диаметра, какого должны быть отверстия, и места для ошибки нет.

Делаем трубы из банок

Сначала я сделал несколько деревянных колодок для того, чтобы зафиксировать банки во время работы на вертикальном сверлильном станке.

Я пользовался маленькой фрезой, чтобы начать делать отверстие, которое по диаметру должно занимать один из краев банки. После этого, верите вы или нет, я вставил маленькую фасонную фрезу с прямолинейными режущими кромками в вертикальный сверлильный станок и расширял отверстия до нужной величины.

Если у вас твердая рука, вырезайте на вертикальном сверлильном станке с нажимом – это очень легко сделать. Обратите внимание на мой удлинительный рычаг – нажим создает пружина от двери решетки. Боже мой, нужда-то действительно всему научит! Я вырезал колодки из огромной заготовки – двух склеенных деревянных брусьев размером 1×4 дюйма (25,4 мм x 101.6 мм). Эти колодки я потом обрезал до размера, которым удобно пользоваться.

Вот колодка для верхушек банок. Внутренняя кромка должна быть более плоской и иметь выемку на глубину, чтобы плотно удерживать банку в том месте, где она расширяется от ободка к основной части. Такой же держатель я изготовил и для донышек банок.

После всех этих трудностей я обнаружил, что проще просверливать верхушки и донышки банок, просто поставив их в удобный держатель, как показано на картинке, а работу выполнять вручную. Вот тут-то и пригодятся кожаные и матерчатые перчатки. Как я и говорил, 51-миллиметровая фреза вплотную входит в пространство внутри ободка банки. Здесь вам нужно быть очень осторожными – именно в этом месте вы, скорее всего, промахнетесь. Я поставил станок на среднюю скорость и пользовался пилами Ленокс (Lenox). Банка может немного вращаться, это не мешает работе. Одним пальцем прижимайте банку за верхушку близко к пиле, а остальными держитесь за колодку. Банки будут быстро нагреваться.

Вырезайте донышки банок 44-миллиметровой фрезой. После первых нескольких банок это будет получаться влегкую. Помните, что если банка будет немного вращаться, этому не нужно мешать. Если вы слишком прижмете банку, то пила замнет ее внутрь колодки. В таком случае банка испортится – металл погнется, и на нем обязательно появятся мельчайшие трещины, хотя их можно и не увидеть. Для примера я загрунтовал одну из банок.

Кольцо, которое вы видите вокруг банки, при использовании воздухонагревателя станет трещиной из-за расширения и сужения металла под воздействием смены температур. Банки из-под газировки всего 10 микрон в толщину, и треснуть они могут очень быстро.

Несколько банок с вынутыми верхушками и донышками.

Я использовал поливинилхлоридную трубу длиной 3 дюйма (76 мм), разрезанную пополам вдоль, чтобы фиксировать трубы из банок, пока затвердевает герметик. Советую купить концевую пробку, разрезать ее пополам и приклеить к трубе. В следующий раз я так и сделаю. Думаю, сбитые гвоздями доски размером 3×4 дюйма (76 мм x 101.6 мм) так же хорошо подойдут, но сам еще не пробовал.

Вот фотография того, как я делал трубу из банок. Я просто наносил силиконовый герметик вокруг нижнего отверстия банки и прижимал склеенные банки в поливинилхлоридной трубе. Одним пальцем я разглаживал место склеивания, а свободной рукой в это время поворачивал трубу из банок.

Слева вы видите почти готовую трубу в поливинилхлоридном держателе. Одна ваша рука спокойно лежит на предпоследней банке в ряду, пока другая большим и указательным пальцами поворачивает склеенные банки.

Кирпичи нужны для того, чтобы придавить банки, покрытые силиконовым герметиком. Я работал в своей гостиной, потому что в моем магазине было слишком холодно. Если слегка наклонить трубу, кирпич будет давить с достаточной силой, чтобы удержать все на своих местах, пока герметик не схватится. Я пользовался этим методом, пока у меня не получилась батарея из 17-ти банок в высоту и 17-ти в ширину. Вот вы и сделали пучки труб. Если ваш воздухонагреватель по размеру не 4 x 8 футов (1,21 м x 2,43 м), определите подходящее количество и длину труб из банок.

Делаем впускной и выпускной коллекторы

Рисунок 1
Впускной коллектор равномерно направляет воздух в трубы из банок (чертеж Золи)

Сначала я взял материал для гребенки размером 1×4 дюйма (25,4 мм x 101.6 мм) и вымерил размеры, которые Золи указал в своей модели в программе СкетчАп (SketchUp). Я сделал пробную гребенку, чтобы убедиться, что детали подходят друг к другу. Она оказалась узкой. Так как в Великобритании все измеряется в метрической системе мер, то я пошел тем же путем. Самая подходящая к размеру банок фреза, которую я смог найти – 54-миллиметровая. По чертёжам отверстия должны быть 55 мм в диаметре, а расстояние между их центрами – 66 мм. Я отступил 10 мм от края гребенки и сделал разметку. Думаю, увеличение расстояния между центрами отверстий до 67 мм не повредит чертежу гребенок, ведь места для этого вполне достаточно.

Читайте также:  Рабочая схема установки Донольда Смита (Donald L. Smith Device)

Я закрепил ненужный материал размером 1×4 фута (30,5 см x 1 м 22 см) под будущую гребенку и вырезал отверстия вручную. Это хорошо получилось. На фото показано, как вырезают вручную. Будьте очень осторожны.

После того, как все это было сделано, я соединил систему труб из банок с верхней и нижней гребенками и изолировал соединения герметиком.

Не бойтесь наносить много герметика, но следите, чтобы он не перекрывал воздушные пути. Измерьте полученное изделие и вырежьте плоские алюминиевые пластины, которые составят переднюю, заднюю и нижнюю части впускного коллектора. Размеры его корпуса должны составлять примерно 6,75 дюймов (171.4 мм) в высоту, 44,5 дюймов (1,11 м) в ширину и 3,5 дюймов (89 мм) в глубину. Общая конструкция – трубы из банок и коллекторы – должна плотно помещаться в полиизоциануратовый корпус размером 4 × 8 футов (1,22 м x 2,44 м).

На фото сверху новая модель впускного коллектора с разделителями воздуха и концевыми пробками, которые мне пришлось делать самому.

Эти детали я сделал из алюминиевого обрамления в рулонах. По краям нужно сделать полукруглые вырезы, чтобы они подходили к краям коллекторов.

Делаем Торцевые заглушки

Я делал это на столе отрезного станка и использовал струбцины и правило. Согните лист и постучите по его краю молотком, и он выровняется.

Покраска и конечная сборка

Вот фотография покрашенной теплообменной панели. Выполняйте покраску снаружи дома или магазина, в котором вы работаете.

Корпус теплообменника должен быть отражающим, чтобы отбрасывать все попадающие на него солнечные лучи на теплообменник.

Фото впускного устройства с крышкой, которые я сделал из алюминия, и прикрепленная к нему 6-дюймовая (152.4 мм) соединительная часть воздуховода (фитинг).

Фото выпускного устройства. Как вы видите, в качестве образца у меня был только чертеж (фотография) простых воздухоотражателей. Золи сказал, что ему понравилась моя работа.

Фототеплообменника, 3-дюймовой (76.2 мм) трубы и банок.

Несколько фотографий корпуса

Я покрыл всю поверхность и внутренние углы полиизоциануратовой плиты алюминиевой лентой.

Затем я обработал силиконовым герметиком все края скотча со внутренней стороны корпуса, чтобы быть уверенным, что они не отклеятся – я уже сталкивался с такими случаями.

Внешние поверхности корпуса защищены от атмосферных воздействий алюминиевым обрамлением.

Фото коллектора в корпусе. Здесь можно увидеть отражение света от задней части корпуса

А вот фото коллектора на боку в моем магазине.

И готовый коллектор внизу. Рейка, которую вы видите посередине, нужна для того, чтобы предохранять панель от расширения при нагревании более, чем на 6 футов (1,82 м). Кроме того, в конструкцию входят алюминиевые бруски размером 3 x 8 дюймов (76 мм x 203 мм), которые поддерживают двойную поликарбонатную панель, не давая ей согнуться при нагревании.

Коллектор может быть установлен в помещении, а также горизонтально или вертикально на южной стороне вашего дома, где будет прекрасно работать.

Во время единственного теста, который я пока провел с помощью Гэри, коллектор лежал задней стороной на строительных козлах, с покрытием, закрепленным несколькими быстродействующими зажимами. Результаты оказались многообещающими – производительность прибора составила 91 фута 3 (2,6 м 3 ) в минуту при нагреве на 60 F (15,5˚ C). Я хотел бы, чтобы производительность поднялась до 100 фута 3 (2,8 м 3 ) при нагреве примерно на 50-55 F (10-12,78˚ C), но для этого необходим более мощный и громкий вентилятор, а значит – и какой-нибудь глушитель.

Еще одно замечание по поликарбонатной плите. Сотрудники «Текс Сапплай» (Tex Supply) посоветовали мне обязательно вырезать ее по всему периметру на полдюйма короче, чем рама коллектора, потому что при нагревании она расширится. Она действительно расширилась, причем сильно. Чтобы герметично приклеить покрытие к панели, я использовал пенополиуретан – на случай, если бы в дальнейшем что-то пошло не так, я легко мог бы снять покрытие.

Неплохая панель для первого раза, не дождусь, пока сделаю следующую.

5 сентября 2010 года

Вы можете задать Грегу вопросы по электронной почте gwest77 AT comcast DOT net (поставьте @ вместо AT и точку вместо DOT)

Интернет-ресурсы о баночных коллекторах:

Сайт Золи. (на венгерском языке – используйте Google Translate (гугл переводчик) для перевода)

Собранная Гэри коллекция ссылок, посвященных коллекторам из банок из-под газировки.

ОЧУМЕЛЫЕ РУЧКИ УКРАИНЫ: СОЛНЕЧНЫЙ КОЛЛЕКТОР ИЗ ПИВНЫХ БАНОК СВОИМИ РУКАМИ

Солнечный генератор из пивных банок очень похож на коллектор, однако он греет не воду, а непосредственно воздух. Как правило, устанавливается данная конструкция на южной стороне. Это повышает ее эффективность. Теплогенератор может быть установлен на крыше здания или даже на стене. Для размещения конструкции на стене понадобится сделать два отверстия, через которые будет входить и выходить воздух. В этом ему поможет вентилятор, который будет направлять в нужном направлении воздушный поток. Результат работы солнечного теплогенератора своими руками — высокая температура воздуха, достигающая 80°С.

Теплогенератор из пивных банок — достоинства конструкции

По своей конструкции солнечные генераторы могут быть двух видов:

  • воздух подается снизу, а выходит уже подогретый сверху (верхняя схема);
  • воздух подается и выходит снизу (нижняя схема).

Какой вариант лучше? Если руководствоваться правилами физики, то в связи с тем, что теплый воздух всегда поднимается вверх, целесообразней будет воспользоваться вторым способом изготовления теплогенератора своими руками.

Данная конструкция может быть изготовлена из различных материалов, среди которых самым дешевым способом является теплогенератор из пивных банок. Им на замену могут прийти тонкие алюминиевые трубы нужного диаметра, однако вопрос в стоимости, придется потратиться.
Если использовать в работе водосточные металлические трубы, тепло будет теряться, поскольку железо имеет меньшую проводимость тепла по сравнению с алюминием.
К достоинствам нашей конструкции можно отнести:

  • отсутствие расходов на строительный материал;
  • небольшой вес коллектора;
  • благодаря округлой форме пивных банок увеличивается площадь теплогенератора.

Изготовление солнечного коллектора своими руками

Для изготовления солнечного коллектора — теплогенератора размерами 2400 х 1265 мм нам понадобятся алюминиевые банки одного размера в количестве 234 шт. Собрав необходимое количество банок, следует их обработать.

Для изготовления солнечного коллектора — теплогенератора размерами 2400 х 1265 мм нам понадобятся алюминиевые банки одного размера в количестве 234 шт. Собрав необходимое количество банок, следует их обработать.

При помощи коронки по металлу необходимо в каждой банке вырезать дно. Отверстие должно быть диаметром 44 мм. Удобным при этом будет воспользоваться сверлильным станком. Прикрепленная в нижней части станка коронка (диаметр 51 мм) не даст возможности пивной банке прокручиваться и мяться в руках.


Данный способ дает на выходе отверстие идеальной формы. Если у вас нет возможности воспользоваться сверлильным станком, заменить его можно дрелью (малые обороты). При этом дрель необходимо закрепить или воспользоваться помощью напарника. В этом случае необходимо соблюдать предельную аккуратность.


Для создания внутренней турбулентности необходимо нарезать верхнюю часть банки на полоски и загнуть внутрь. В результате этого воздух, ударяясь о стенки пивных банок, будет быстрее нагреваться.

После обработки всех банок, необходимо их помыть и обезжирить. При этом может быть использовано любое моющее средство.

После просушивания банки будущего теплогенератора своими руками необходимо склеить в трубы. В состав каждой из труб должно входить 13 банок (общая длинна 2150 мм). В результате мы получаем 18 каналов.

При склеивании, для соблюдения ровности каналов, следует пользоваться направляющей. Это можно сделать при помощи металлического уголка или самостоятельно сделанной направляющей из двух досок.

Первой укладывается банка, имеющая два отверстия.


Банки склеиваются специальным герметиком для алюминия, способный выдержать температуру от -50 до +250 0 С.

Герметик необходимо нанести на горлышко банки с внутренней стороны. Слой должен быть ровным.

В процессе склеивания каждую банку необходимо зафиксировать широкой резинкой.

После приклеивания последней банки необходимо сдавить полученную конструкцию при помощи прижимного винта. В таком состоянии наша конструкция должна остаться на сутки для высыхания клея.

Изготовление короба для солнечного коллектора из пивных банок

Для изготовления каркаса короба может быть использовано дерево, влагостойкая фанера или плиты OSB. Размеры короба:

  • по внешним его границам — 2400 х 1265 мм;
  • толщина в меньшей части короба — 120 мм;
  • толщина в верхушке изгиба — 160 мм.

Задняя стенка короба изготавливается из фанеры толщиной 12 мм, а боковые его стенки из досок (20мм). Углы необходимо армировать металлическими уголками. С целью поддержки труб посередине необходимо установить планку.

Выпуклость лицевой стороны коллектора своими руками помимо элегантного внешнего вида позволяет более интенсивно попадать солнечным лучам на поверхность. Отметить правильный радиус на заготовке поможет веревка, привязанная к карандашу с одной стороны, а другая сторона веревки привязывается на определенном расстоянии от заготовки — 4,75 м.

Рекомендуется на боковых стенках сделать скос. Это позволит акриловому стеклу плотно прилегать на протяжении всей поверхности солнечного коллектора своими руками.

Подробная пошаговая инструкция по изготовлению солнечного коллектора здесь.

Создание воздуховодов для солнечного коллектора

Для изготовления воздуховодов используется фанера толщиной 12 мм, оббитая алюминием (слой — 1 мм). Во избежание потерь воздуха стыки следует обработать герметиком.

В нашем случае отверстия воздуховоде для теплогенератора были высверлены коронкой (54 мм). Следует равномерно и симметрично распределить все 18 отверстий по ширине коллектора своими руками.

Перед закрытием воздуховода, пространство между ним и задней стенкой следует утеплить при помощи минеральной ваты.
Не забудьте обработать все щели герметиком.

Подставка из фанеры, обклеенная алюминиевой фольгой, улучшит удобство монтажа воздушных каналов из пивных банок.

Нижний воздуховод для солнечного коллектора своими руками

Нижний воздуховод создается таким же образом, как и верхний. Разница заключается только в вентиляционных отверстиях, которые позволят получать свежий воздух. При сильных морозах их можно закрывать.

На фото мы можем видеть разделение воздуховода на две части. Через дальнее отверстие осуществляется забор холодного воздуха, а горячи воздух выходит из ближнего. Герметичность конструкции обеспечивается обработкой швов герметиком.

Надежность фиксации банок для теплогенератора своими руками обеспечивается следующим образом. При помощи ножниц мы срезаем верхние части (кольца) на 18 банках.

Затем мы устанавливаем кольца в воздуховоде и герметизируем их.

Готовый нижний воздуховод окрашивается в черный цвет и располагается на таком расстоянии, которое сможет обеспечить плотность труб.

Следующим шагом будет полная покраска солнечного коллектора из пивных банок. Это защитит нашу конструкция от воздействий внешней среды. Применяя антисептики вы повышаете устойчивость системы.

Крепление выполняется в форме крючка и изготавливается из полосы размерами 4 х 40 мм.

В последний момент устанавливается и крепится степлером крышка с москитной сеткой.

Изоляция коллектора из пивных банок

Изоляция имеет большое значение. Тщательное утепление позволит максимально сохранить тепло в системе. Утепление осуществляется на завершающем этапе создания теплогенератора из пивных банок своими руками. После окрашивания боковые стенки конструкции изолируются утеплителем, способным выдерживаться высокие температуры (120 0 С).

Задняя стенка изолируется при помощи минеральной ваты со слоем алюминиевой фольги.

Вентиляция в теплогенераторе

На случай образования конденсата рекомендуется сделать в коробе отверстия (закрывающиеся) для вентиляции. В нашем случае были использованы болты с крупными пластиковыми головками. Отверстие просверливается в боковой части каркаса. Затем в него вставляется отрезок трубы размерами 1/2 или 3/4 дюймов.

Читайте также:  Солнечный водонагреватель своими руками

Если посмотреть изнутри, мы увидим буксу с резьбой со вкрученным болтом, прикрепленную в уголке. Если болт вкрутить полностью, отверстие трубки перекрывается шляпкой болта и наоборот, откручивая — открывается.

В процессе стыковки труб необходимо следить за их параллельностью по отношению друг к другу. Направление труб — от горлышка к верхнему воздуховоду.

Регулирование стыковки труб осуществляется при помощи планки. Все стыки при этом следует обработать герметиком. Затем крышка воздуховода закрывается.

Упорная планка посередине обеспечит надежность конструкции.

Стыки верхнего воздуховода также обрабатываются изнутри.

Затем закрываем верхний воздуховод.

Следующим шагом будет покраска теплогенератора из пивных банок. Для этого подойдет матовая, термостойкая краска черного цвета в баллончике. Такой краской окрашивают автомобили, барбекю и т.д.

Вентиляционные отверстия соединяются при помощи переходов от прямоугольной к круглой форме.

Периметр каркаса солнечного воздушного колектора своими руками обклеивается уплотнителем из резины. Это даст возможность сохранить тепло.
Далее монтируется крышка для отверстия вентиляции.

С целью поддержки прозрачного покрытия в упорную планку вкручиваются болты с круглой шляпкой (мебельные).

Для остекления системы рекомендуется использовать поликарбонат (сотовый или монолитный). Предварительно подготавливаем отверстия для саморезов (шаг — 10-15 см). Затем поликарбонат (4 мм) прикручивается к каркасу. Делаем все аккуратно и осторожно. Главное чтобы стекло не треснуло.

Декоративная отделка осуществлялась путем изготовления панели из металла на листогибе. Окрашивание выполнялось порошковой краской. Сегодня множество фирм предоставляют услуги по изготовлению. коньков и отливов. С этим вопросам можно обратиться к ним.

Далее солнечный воздушный коллектор из пивных банок устанавливается на стену.

Для теплогенератора из пивных банок рекомендуется использовать высокопроизводительный вентилятор (200 — 270 м 3 /ч). При работе вентилятора с меньшей производительностью уменьшится КПД.


Данный коллектор своими руками предусматривает установку вентилятора на выхлопную трубу. Это позволит использовать отверстия для вентиляции — открывая крышку теплый свежий воздух поступает в помещение.

Замеры температуры солнечного коллектора

Первый замер работы коллектора из пивных банок осуществлялся в 50 см от выхлопной трубы 16 октября в 15.00. На улице был небольшой ветерок. Показатель температуры был +78 0 С (температура воздуха на улице — +4,5 0 С).

Второй замер осуществлялся 18 октября в 15.00. На улице было пасмурно, ветер. Показатель температуры был +69 0 С (температура воздуха на улице — +7,9 0 С).


Третий замер осуществлялся 13 февраля в 15.00. На улице было солнечно. Показатель температуры был +56 0 С (температура воздуха на улице -4,3 0 С).

Глушитель для вентилятора

Шум вентилятора конструкции создавал некоторый дискомфорт, что привело к мысли о создании глушителя. Для этого понадобились пластиковые переходники (2 шт.) и металлическая сетка.

Большой проблемой это был громкий шум вентилятора. Однако эта проблема была быстро решена путем изготовления глушителя. Для этого были приобретены два пластиковых переходника и металлическая сетка.

Сетку следует скрутить в трубу и вставить внутрь переходника. Длинна конструкции составит 60 см.

Для фильтра используется синтепон, тонкий слой которого обматывается сверху. Фиксация выполняется по бокам при помощи скотча. Фильтр сможет задержать пыль от минеральной ваты и предотвратит ее попадание в помещение.

В завершении этапа необходимо обернуть конструкцию минеральной ватой с фольгой. Это позволит уменьшить шум от вентилятора.

Глушитель не влияет на производительность вентилятора, при этом убирая неприятный шум.

Существует возможность автоматизировать процесс отопления путем установки термостата с датчиком. На нем устанавливаются параметры отключения вентилятора, к примеру при низких температурах.

В завершении следует отметить, что для доставки теплого воздуха в другие комнаты вы можете использовать вентиляционные каналы (теплоизолированные).

Солнечный воздушный коллектор своими руками

В наше время, когда исчерпываются природные ресурсы, люди все чаще ищут альтернативные источники энергии. А что может быть лучше энергии солнца – общедоступной, неисчерпаемой и, если можно так выразиться, дармовой?

Солнечный воздушный коллектор своими руками

И вот совсем недавно при изучении возможного применения солнечного света учеными был изобретен воздушный коллектор – прибор, поглощающий солнечную энергию и превращающий ее в тепло, которое впоследствии передается теплоносителю. Зачастую теплоносителем выступает жидкость, но нередко используется и воздух – более того, бывают ситуации, когда воздушные приборы даже более эффективны.

Солнечный воздушный коллектор своими руками

Содержание пошаговой инструкции:

Чем отличается воздушный коллектор

Вполне очевидно, что главным отличием коллектора является используемый им в работе теплоноситель – в данном случае обыкновенный атмосферный воздух. В принципе, такое устройство выполняется сегодня в двух вариантах:

  • в виде плоской перфорированной или гофрированной панели ;
  • в виде системы металлических труб , хорошо проводящих тепло.

Воздух здесь подогревается при контакте с металлом, а ребра на поверхности панели при этом лишь увеличивают теплоотдачу. Всю конструкцию желательно установить на южной стене здания, а также качественно теплоизолировать . Характерно то, что циркуляция теплоносителя бывает естественной и принудительной (с использованием вентиляторов).

Воздушные коллекторы могут работать при значительно меньшей температуре, чем жидкостные. К примеру, в обычной гелиосистеме оптимальная температура для работы коллектора – 50°С и выше, в то время как воздушным хватит и 25°С. Это позитивно сказывается на эффективности описываемых нами устройств, ведь чем ниже температура, тем меньшие теплопотери.

Сферы применения

Столь низкая популярность приборов объясняется очень просто: у воздуха достаточно низкая теплопроводность . Тем не менее, гелиосистемы воздушного типа широко используются:

  • в системах рекуперации воздуха;
  • в осушительных системах;
  • в воздушном обогреве дома.

Получается, что воздушные коллекторы вряд ли можно считать полноценной заменой жидкостных, но благодаря им вполне можно сократить коммунальные расходы.

Преимущества и недостатки

У воздушных гелиосистем, как и у всех творений рук человека, есть свои сильные и слабые стороны. К преимуществам можно отнести:

  • эффективность в воздушной сушке;
  • небольшую стоимость;
  • простую конструкцию.

Но есть и недостатки:

  • воздушными коллекторами нельзя нагревать воду;
  • они весьма габаритны (ввиду незначительной теплоемкости);
  • у них скромный КПД.

Обратите внимание! Чтобы повысить эффективность воздушных гелиосистем, их устанавливают в стены (южные, как мы помним) еще при строительстве здания.

Солнечный воздушный коллектор своими руками

Вы можете сделать такой прибор самостоятельно, благо конструкция его, как уже отмечалось, достаточно простая. Для этого потребуются дешевые и доступные материалы (некоторые даже умудряются использовать жестяные банки).

Но помните: такие коллекторы достаточно габаритны , поэтому вполне вероятно, что придется соорудить конструкцию на всю стену.

Изготовление прибора из водосточных труб

Такой прибор уж точно лучше сделать на всю стену. Осенью и весной он поможет вам существенно сэкономить на отоплении. Материалы подбирайте, учитывая габариты будущей конструкции.

Что потребуется в работе

  1. Доска толщиной 3,5–4 см.
  2. Хомуты для крепления.
  3. Минвата для утепления.
  4. Влагоустойчивая фанера толщиной не более 1 см (на заднюю стенку).
  5. Лист алюминия небольшой толщины.
  6. Алюминиевые водосточные трубы (желательно с прямоугольным сечением – так будет удобнее).
  7. Пенополистирол – с его помощью вы изолируете торцевые поверхности.

Технология изготовления

Для создания коллектора выполните следующие процедуры.

Первый этап. Сначала сделайте небольшой деревянный короб в виде открытого ящика. Его глубина должна быть чуть больше высоты водопроводных труб.

Сначала сделайте небольшой деревянный короб в виде открытого ящика

Второй этап . Надежно изолируйте заднюю и торцевые стенки. Поверх минеральной ваты уложите алюминиевый лист, к которому, в свою очередь, хомутами прикрепите трубы.

Обратите внимание! Для улучшения циркуляции воздуха с одной стороны короба трубы должны отступать приблизительно на 15 см от торца.

По краям трубы фиксируйте деревянной перегородкой, где предварительно проделайте крепежные отверстия в соответствующих местах.

Третий этап . Ввиду того что входное и выходное отверстия будут находиться с одной стороны конструкции, проделайте на противоположной стороне несколько деревянных перегородок для того, чтобы разделять потоки воздуха.

Четвертый этап . После монтажа окрасьте коллектор в черный цвет. Для передней панели отлично подойдет сотовый поликарбонат.

Помните: воздушный коллектор в собранном виде весит достаточно много , поэтому для монтажа вам понадобится несколько помощников. При установке используйте прочные и устойчивые опоры.

Затем подключите коллектор к вентиляции здания посредством утепленных воздуховодов. Также позаботьтесь о канальном вентиляторе, который будет нагнетать воздух в помещение.

Изготовления прибора из профнастила

Это еще более простая конструкция солнечного коллектора. Вы соорудите ее гораздо быстрее.

Первый этап . Сначала сделайте деревянный короб так же, как в предыдущем варианте. Далее по периметру тыльной стенки проложите брус (приблизительно 4х4 см), а на дно уложите минеральную вату.

Второй этап . Проделайте выходное отверстие в дне.

Третий этап . Уложите на брус профнастил и перекрасьте последний в черный цвет. Разумеется, если изначально он был другого цвета.

Четвертый этап . Сделайте перфорацию по всей площади профнастила для притока воздуха.

Пятый этап . При желании можете остеклить всю конструкцию поликарбонатом – это повысит температуру нагрева абсорбера. Но не забывайте о том, что нужно предусмотреть еще и выходное отверстие для притока воздуха извне.

Изготовление коллектора из пивных банок

Это практичная и дешевая альтернатива описанным выше моделям гелиосистем. Она характеризуется низкой себестоимостью, ведь главное – запастись достаточным количеством жестяных банок (это будет нетрудно для любителей «коки» или баночного пива).

Солнечный коллектор из алюминиевых банок

Обратите внимание! Банки обязательно должны быть из алюминия – этот металл обладает высоким теплообменом и устойчивостью к коррозии. Поэтому при подготовке проверьте каждую банку с помощью магнита.

Технология изготовления

Первый этап. Сначала проделайте в дне каждой банки по три отверстия, каждое размером с ноготь. Сверху сделайте вырез в форме звезды и отогните края наружу – это улучшит турбулентность подогретого воздуха.

Как сделать солнечный коллектор

Второй этап . Далее обезжирьте банки и сложите их в трубы соответствующей длины (в зависимости от размеров стены). Дно и крышка будут почти идеально прилегать друг к другу, а незначительные зазоры между ними обработайте силиконом.

Обратите внимание! Силикон должен выдерживать перманентно высокую температуру, иначе ваша конструкция рассыплется в процессе эксплуатации.

Не смещайте банки, пока силикон полностью не высохнет. Можете использовать для этого самодельные шаблоны – две доски, сбитые под углом (своего рода желоб). Это обезопасит трубы от боковых смещений.

Солнечный коллектор из алюминиевых банок

Третий этап . Далее приступите к сборке корпуса. Для задней стенки используйте лист обычной фанеры необходимого размера. Можете сверху и снизу короба установить специальные деревянные планки с отверстиями под трубы – так вы добьетесь более надежной фиксации.

Как сделать солнечный коллектор

Четвертый этап . Уложите трубы в короб и закрепите все тем же силиконовым герметиком. Потом выкрасите их черной краской – темные цвета, как известно, притягивают солнечные лучи. Между трубами проложите минеральную вату. Когда краска высохнет, закройте коллектор листом сотового поликарбоната.

В качестве заключения

В итоге хотелось бы отметить, что описанные нами конструкции гелиосистем позволяют добиться внушительного прироста температуры – зачастую в солнечный день в помещении на 25–30°С теплее, чем снаружи. Вместе с тем существенно улучшается и микроклимат в помещении, поскольку обеспечивается перманентное поступление свежего воздуха.

И еще один важный момент: такая конструкция не накапливает тепло, поэтому ночью она будет не нагревать, а охлаждать воздух в помещении. Эту проблему можно решить укрыванием коллектора после захода солнца.

Видео – Солнечный коллектор из алюминиевых банок

Николай Журавлёв главный редактор

Автор публикации 07.01.2015

Понравилась статья?
Сохраните, чтобы не потерять!

Ссылка на основную публикацию