Тепло из ниоткуда. Эксперимент Григгса

Кавитационный теплогенератор: устройство, виды, применение

Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.

Устройство и принцип работы

Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.

При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.

Простейшая модель

Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.

Идеальный теплогенератор Потапова

Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:

Рис. 2: кавитационный теплогенератор Потапова

Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.

Рис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:

Рис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.

Рис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Применение

В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

  • Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
  • Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
  • Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м 2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).

КТГ своими руками

Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:

  • Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
  • 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
  • Термометр для измерения величины нагрева теплоносителя в системе.
  • Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
  • Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
  • Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
  • Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.

Рис. 6: схема кавитационного теплогенератора

Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.

Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.

Хотите окунуться в себя с головой? Музей Corpus

Скорей всего, многие из нас хоть раз в жизни хотели бы заглянуть внутрь своего организма, чтобы увидеть, как он вообще работает и что происходит там, к примеру, при переедании, как выглядит язва желудка и т п. Не преувеличивают ли врачи насчёт вреда табака, так ли всё плохо в лёгких тех, кто курит? Всё это можно узнать в музее Corpus («Тело») в Нидерландах.

Железный человек

Раньше такое любопытство можно было удовлетворить только в магазинах наглядных пособий, в которых, как описывали это место писатели, над весело раскрашенной сделанной из картона печенью пьяницы обнимались двое скелетов. Ещё можно было получить специальность хирурга, чтобы беспрепятственно исследовать тело человека изнутри. Однако такой путь подойдёт только очень увлечённым. Но большинству хочется просто посмотреть.

И недавно появилась такая возможность. В музее человеческого тела, который открылся в Нидерландах 3 года назад под названием Corpus, посетители могут посмотреть изнутри на глазное яблоко, пробежаться по желудку, потыкать пальцем в эритроцит. Дети могут попрыгать на языке и подёргать гланды, причём не только для развлечения, а и для расширения кругозора.

Внешний вид этого музея совершенно неказист: 2 тривиальных параллелепипеда из стекла, в один из них наполовину «встроена» покрытая лёгкой ржавчиной схематичная человеческая фигура в сидячем положении, сложившая руки без кистей на коленях. Что касается ржавчины, местные строители уверяют, что сталь, использованная для обшивки фигуры, особая: вначале она слегка поржавеет, потом прекратит ржаветь. Тем не менее, смотрится это всё подозрительно, будто при строительстве просто сэкономили на краске.

Однако размеры этой фигуры поистине впечатляющие — 35 м в высоту. Потому она хорошо видна с самолётов, которые садятся в самом крупном аэропорту страны — Схипхол, а также с проходящей рядом международной трассы, что создаёт весьма неплохую рекламу.

Огромное сердце

Внутренний вид намного более привлекателен. Поднявшись на эскалаторе, который сооружён в колене гиганта, вы попадёте в участок костей бёдер, в котором с помощью специальных механизмов увидите процесс формирования новых эритроцитов и лейкоцитов. Также там можно увидеть работу мышц и суставов при ходьбе (фигура при этом остаётся сидеть на месте, показ происходит при помощи встроенной гидравлики).

Однако это лишь начало. Дальше (вернее, выше) — поинтереснее. На ещё одном маленьком эскалаторе вы легко попадёте в матку, в которой можно посмотреть на процесс зарождения новой жизни. Затем следует пищеварительный тракт с не слишком привлекательными с виду, однако необходимыми пищеварительными процессами. После этого можно увидеть настоящий спектакль о работе лёгких, сердца, печени и других органов.

При этом все передвижения посетителей внутри организма сочетаются с соответствующим звуковым сопровождением: если, к примеру, группа посетителей исследует пищеварительный тракт, плавную речь экскурсовода будет постоянно прерывать довольное урчание, словно внутри желудке действительно идёт переваривание еды. Сотрудники музея любят шутки: например, «атака» сперматозоидов на яйцеклетку сопровождается безумным топотом табуна лошадей.

Присутствуют также элементы, которые имитируют неожиданные нарушения внутри организма, такие как проникновение под человеческую кожу большой занозы, которая буквально «разрывает» ткани, высовываясь острым концом непосредственно в коридор, в котором и проходит экскурсия в текущий момент. После чего сразу видно процесс залечивания полученной раны организмом.

Мозговой штурм

Закончится экскурсия в голове. Тут экскурсовод расскажет всё о полости рта, работе языка и вкусовых рецепторов, а также голосовых связок. Возможно, он даже позволит вам посидеть на вычищенных (на первый взгляд — идеально) зубах (но при должном внимании вы всё же сумеете обнаружить остатки еды между этими зубами, поскольку всё должно быть естественным). Вместе с этим вы посмотрите на процесс роста волос, а также узнаете, зачем мы, собственно, спим.

Потом идут нос и внутреннее ухо, в которых вас ожидает сюрприз — чихание железного человека, включающее демонстрацию сопутствующих процессов. Во время пребывания в глазном яблоке экскурсоводы при помощи видеороликов расскажут вам о фокусировании света на сетчатке и попадании изображения в мозг.

Читайте также:  Вертикальный ветрогенератор своими руками

При этом демонстрация работы именно головного мозга больше всего похожа на яркое шоу. Посетители даже получают в подарок специальные стереоскопические очки, усиливающие эффект.

Однако такой «мозговой штурм» не является ещё полным завершением экскурсии. При выходе из колоссального организма посетитель попадает в обычные залы информационного медицинского центра, в котором работают сотрудники, помогавшие «лепить» железного человека. Здесь экскурсанты узнают о здоровом образе жизни, а также смогут пройти некоторые медицинские тесты.

Детям вход разрешён

Хотя часть процессов, которые проходят в человеческих органах, весьма интимны, какие-либо ограничения относительно доступа в музей отсутствуют. Ежедневно, за исключением понедельника, в музей может зайти любой человек в возрасте от 8-и лет, если он в состоянии заплатить за вход. Цена детского билета составляет 14 евро, взрослого — 16,5. Детям (и множеству взрослых тоже) наиболее понравится то, что в Corpus можно, кроме просмотра и прослушивания, также прикасаться руками к самым интересным для вас экспонатам. При этом даже наиболее «тонкий внутренний мир» не приведёт к чувству отвращения: нет кровавых ужастиков и порнографии, всё носит сугубо научный характер, однако при этом сочетается с красочностью и потрясающей увлекательностью.

Пожалуй, это всё. Добавим, что создание этого действительно уникального учреждения заняло 1,5 года и потребовало 27 000 000 000 долларов. В итоге музей вышел столь познавательным и увлекательным, что к нему сразу же проявили заинтересованность медики и шоумены из США, Испании, Китая, Мексики, Индии и некоторых других стран. В ходе церемонии открытии музея Хенри Реммерс, который стал его основателем, в разговоре с корреспондентами заметил, что сейчас проходят переговоры насчёт строительства в будущем аналогичных заведений в РФ и Швейцарии.

ЭНЕРГИЯ “ИЗ НИОТКУДА”

Экспериментатор в своей работе нередко получает парадоксальные результаты, противоречащие, на первый взгляд, хорошо проверенным законам природы. Порой они приводят к открытиям, гораздо чаще – находят вполне естественное объяснение в рамках общеизвестных теорий. Доктор технических наук В. Яворский, исследуя чисто прикладную задачу, обнаружил явление, заставляющее усомниться в справедливости закона сохранения энергии. Конечно, об отмене этого фундаментального закона речи идти не может, но выяснить, что же происходит в эксперименте, не только крайне интересно, но и очень важно.

Работая в Научно-исследовательском машиностроительном институте (НИМИ) над средствами поражения брони, я много лет назад обратил внимание на чрезвычайно большое выделение энергии, главным образом в виде теплоты, происходящее при внедрении длинного металлического, не снаряженного взрывчаткой стержня – бронебойного снаряда – в стальную бронеплиту большой толщины. Неоднократно проводимые расчеты неизменно показывали, что энергия, выделявшаяся при внедрении снаряда в броню, существенно превосходит кинетическую энергию, которой обладал снаряд в момент удара.

Каждому, вероятно, понятны сомнения исследователя, который был воспитан в духе почтения к незыблемости устоев науки и вдруг столкнулся с постоянно повторявшимися фактами, противоречащими главному физическому закону – закону сохранения энергии. Однако по мере того, как прибавлялся все новый фактический материал, подтверждающий мою правоту, сомнения постепенно исчезали.

В институте сохранился фрагмент бронеплиты толщиной 400 мм со сквозной пробоиной, вырезанный после испытаний, проведенных еще в 1972 году. И на лицевой, и на тыльной стороне плиты отчетливо зафиксировались следы разогрева металла. На их границе, по оценке металловедов, температура была около 350оС, а вблизи пробоины она приближалась к 1000оС.

Поскольку известны были размеры зоны разогрева брони, легко вычислить и массу разогретого металла, и количество выделяемого тепла. Зная же массу снаряда (4,05 кг), его скорость (1390 м/с) и подсчитав кинетическую энергию, можно было убедиться в том, что одна только выделившаяся тепловая энергия, рассчитанная по минимуму, в данном случае превышает кинетическую энергию снаряда более чем в 4 раза.

Эти и другие аналогичные материалы послужили основанием для обсуждения обнаруженного энергетического парадокса на научно-техническом совете НИМИ в июне 1993 года. В решении совета указывалось, что для получения достоверных данных необходимо провести специальные экспериментальные работы.

Для экспериментов взяли имеющуюся в баллистической лаборатории института пушку калибром 23 мм. Были опасения, что на результатах может сказаться масштабный эффект: уменьшение калибра пушки в 5 с лишним раз, а массы снаряда почти в 60 раз неизбежно понизит тепловыделение. Однако недостаток средств вынудил пойти на риск, который полностью оправдался: хотя масштабный эффект действительно имел место, но не помешал установить достоверность явления.

Для стрельбы изготовили уменьшенные модели бронебойных снарядов – ударники с сохранением основных масштабных характеристик. По ряду технических причин начальная скорость ударника не превышала 1000-1240 м/с вместо 1400-1600 м/с. Это, несомненно, сказалось на количестве выделенного при ударе тепла. Ударники выстреливались в броню, установленную на расстоянии одного метра от дульного среза пушки.

Главной трудностью было получить достоверные данные о температуре брони при внедрении в нее ударника и о количестве выделившейся теплоты.

Попытки встроить в броню термопары не дали результата. От удара контакты рвались, а сами термопары практически мгновенно выходили из строя.

Пришлось отыскать новое техническое решение этой задачи и создать модель броневой плиты в виде цилиндрической детали. Количество тепла, выделившееся в ней, находили методом калориметрии. Для этого деталь после выстрела погружали в сосуд с водой, температуру которой измеряли с точностью до 0,1оС. По условиям техники безопасности сделать это можно было только через 2 минуты, и деталь успевала слегка остыть. Но, несмотря на потери тепла, избыточный разогрев стабильно регистрировался, хотя и был слабее, чем при натурных испытаниях в случае снарядов большего калибра.

Результаты экспериментов показали следующее.

Кинетическая энергия ударников массой 61,5 г и 88,5 г практически равна: 4,34.104 Дж.

Выделившееся тепло в пересчете на энергию составило: ударника массой 61,5 – 5,18.104 Дж (средняя по четырем опытам); для ударника массой 88,5 г – 6,39.104 Дж (средняя по семи опытам).

Превышение выделившейся тепловой энергии над кинетической энергией ударника массой 61,5 г составило 20%, ударника массой 88,5 г – 48%. Здесь наглядно видно влияние масштабного фактора – зависимости эффекта от массы ударника. Стабильность полученных результатов дает основание говорить об их достаточной достоверности.

Научно-технический совет института дал этой работе положительную оценку, а разность между затраченной и выделившейся энергией была названа энергетическим дисбалансом.

По мнению исследователей из Физического института им. П. Н. Лебедева (ФИАН), обнаруженный дисбаланс указывает на большую сложность процессов, сопровождающих внедрение снаряда в броню. Корректный их учет представляет собой сложную задачу, весьма важную как в теоретическом, так и в практическом отношении. И хотя говорить о нарушении закона сохранения энергии нет никаких оснований, необходимо выяснить, что же все-таки происходит в момент удара и откуда берется “лишняя” энергия.

Автор: В. Яворский.

Автор: ИГОРЬ02-11-2014, 23:23

Американцы проводили похожие опыты и у них выделяемое тепло примерно в 10 раз превышало кинетическую энергию. В экспериментах Роя Паттерсона с никелевыми шариками соотношение “тепло/кин.энергия” было уже на уровне 950-980. А в экспериментах белорусского физика Ушеренко с быстролетящими песчинками этот фактор колебался на уровне порядка 10 000 (правда, у него не все песчинки прожигали насквозь мишень, а лишь те, которые попадали в специально приготовленные микротрещинки).

Откуда берётся энергия во всех этих опытах? Моё мнение – из энергии физического вакуума. Когда мы бросаем любой предмет, мы через ускоренное движение его гравитационного поля деформируем структуру физвакуума, совершаем над ним работу и отдаём ему нашу мускульную энергию. А когда предмет стукнется о препятствие, он снова движется неравномерно (замедленно), и теперь уже вакуум через замедленное движение его гравитационного поля совершает над ним работу и отдаёт ту энергию, которую получил чуть раньше на стадии ускорения, плюс некоторый добавок, т.к. он сам обладает огромнейшей энергией. Подбирая правильные условия ускорения и торможения, можно сделать этот добавок очень огромным, что и происходит во всех описанных опытах.

Популярные услуги:

  • Ранжирование проектов в России и за рубежом

Содействие в участии в зарубежных выставыках и конференциях: от подачи завки и подготовки рекламного материала до самого проведения. Подбор кадров для представительств зарубежных компаний и организаций.

Продвижение Ваших проектов и помощь бизнесу

Любые Ваши коммерческие идеи мы превратим в логически законченный, наглядно оформленный документ (бизнес-план), который можно преподнести инвесторам и партнерам..

Подпишитесь на новости:

И на вашу почту всегда будут приходить только самые интересные и отбрные новости нашего проекта.

* В данный момент новости возможно получать только по каналу RSS

О сайте:

По оценкам экспертов в инженерных вузах и научных организациях России на сегодня накоплено свыше 100 тыс. высоких технологий, наукоемких разработок и законченных проектов на научно-техническую продукцию. Вовлечение этих разработок в хозяйственный оборот отечественной промышленности и продвижение их на мировой рынок высоких технологий может и должно стать одним из существенных источников привлечения дополнительных внебюджетных средств..

Кавитационный теплогенератор

Кавитационный теплогенератор – это тепловой насос, гидродинамический преобразователь энергии движения жидкости в нагрев калориферов.

Кавитация

На первый взгляд, тема кавитационных теплогенераторов представляется фантастичной и вычеркнута из Википедии, но по детальному изучению оказалась любопытной. Тем интереснее становился вопрос, чем дальше авторы углублялись в изучение. Книга Фоминского о дармовых источниках энергии начинается с описания глобальной экологической катастрофы конца XX века. Среди общеизвестных фактов о вреде двигателей внутреннего сгорания, невероятных сведений о ценности кавитационных теплогенераторов выдвигаются гипотезы об изменении режима дыхания лесов планеты и… об остановке тёплого течения Гольфстрим. В 2003 году книжка читалась как сборник фантастики. Напомним, сейчас Европа обеспокоена остановкой Гольфстрима, становится ясным, что автор сумел предсказать будущее на 10 лет вперёд.

Это наталкивает на мысль, что идея кавитационных теплогенераторов не столь утопична, как пытаются представить средства массовой информации. Известно, что КПД термоэлектрических источников составлял доли процента в начале XX века, сегодня это направление считается перспективным. Эффективность первых термопар достигала 3%, что сопоставимо с успехами паровых двигателей начала XIX века. Уже сегодня инженеры (см. скрин) говорят, что КПД кавитационного теплогенератора допустим выше единицы.

Кавитационный теплогенератор – насос. Поток жидкости просто переносит энергию из места в место. Любой кондиционер и холодильник показывают КПД выше 100%, работают по принципу теплового насоса, перекачивая энергию из одной области пространства в другую. Сопоставим с поливом деревьев: энергия электричества не может напитать корни, но стоит к двигателю приделать гребной винт, как потоки воды устремляются, чтобы принести живительную влагу. Принцип действия кавитационного теплогенератора в точности аналогичен.

Тепловой насос считается дорогим типом оборудования. Обычно качает тепло Земных недр или речного потока. Температура в указанных источниках невысока, понижая давление фреона, удаётся добиться забора тепла и доставки в нужное место. Холодильник не вырабатывает мороз непосредственно. Он разряжает фреон, за счёт законов термодинамики тепло переходит на испаритель, оттуда доставляется к радиатору на задней стенке.

Аналогичным образом кавитационные пузырьки образуются в местах, где давление воды ниже точки перехода в иное агрегатное состояние (см. рис.). Как результат, поглощается большое количество энергии. На перевод вещества в иное агрегатное состояние приходится затратить тепло. Которое берётся из окружающей воды, а та – перекачивает с корпуса кавитационного теплогенератора, потом из помещения. На корпусе тепло образуется за счёт нагнетания давления помпой. КПД выше единицы объясняется отбором тепла у окружающей среды. Высок процент использования собственных потерь генератора на нагрев обмоток и трение.

Помощь кавитационного теплогенератора

Климат сегодня сильно меняется из-за работы двигателей внутреннего сгорания. 40% углекислого газа на планете вырабатывается транспортом, значительная часть выбрасывается частными домовладельцами, жгущими топливо для обогрева. Выделяется в атмосферу сонм вредных веществ, нарушаются условия существования жизни на планете. Следовательно, энергия ТЭС не предлагается в качестве альтернативы, приносящей пользу. В силу очевидных причин.

Кавитационные теплогенераторы позволяют решить часть сложностей очевидным способом: перекачивая энергию из части пространства в другую, получится решать насущные потребности человеческой жизнедеятельности. К примеру, генератор может давать тепло и забирать. Ключевое преимущество обогревателей в том, что энергия не исчезает бесследно. Она остаётся теплом на омическом сопротивлении проводов, преодолевает силы трения. Все происходит в районе силовой установки, в конечном итоге теряется паразитными эффектами, неиспользуемыми в силу разрозненности факторов. Кавитационный генератор позволит собрать потерянные крохи простым методом: примется откачивать тепло из очага его образования:

  1. Обмотки двигателя.
  2. Поверхности трения.

Уже за счёт фактора КПД установки повысится: тепловые потери греют место, откуда перекачивается тепло. Это безусловный плюс. Остальное возьмётся из воздуха. Стоит вдуматься:

  • Холодильник летом греет кухню, КПД падает.
  • Кондиционер забирает жару с мороза или выкачивает холод с подсолнечной стороны здания.

А кавитационный теплогенератор способен собственные потери утилизировать с пользой. Обязан быть признан перспективным. Сложность – как получить побольше пузырьков из механического движения. Этому уже сегодня посвящены десятки, если не сотни патентов, к примеру, RU 2313036. Несложно догадаться, что для перекачивания тепло нужно откуда-то взять. Это правильная постановка вопроса, из-за упущения смысла происходящего люди не хотят верить, что кавитационный генератор – реальность: «Как теплотехник, скажу – это бред. Энергия из ниоткуда не возникает. Затрачивать меньше электроэнергии и получать больше тепловой позволяет тепловой насос.» (форум okolotok.ru)

Читайте также:  Дачнику-фермеру - Насос для воды без электричества и бензина

Если профессионалу непонятно, что речь идёт о своеобразном тепловом насосе, что знает широкая публика про кавитационный теплогенератор… Установим, кому окажется полезен кавитационный теплогенератор. Доведённую до совершенства конструкцию допустимо применять:

  1. Для отбора энергии сточных вод.
  2. Охлаждения цехов с одновременным обогревом рабочих мест.
  3. Обогрева помещений без использования нефти, газа, мазута, угля, дров и пр.

Механизм кавитации

Образование пузырьков возможно в движущемся потоке. Там, где резко снижено давление. К подобным местам относят гребные лопасти судов, переходники трубопроводов с разным диаметром (см. рис.). Собственно, конструкции кавитационных генераторов делят на роторные и трубчатые. Обе приводятся в движение электричеством, но принцип действия различается. Винт и труба показаны на скринах для иллюстрации сказанного.

Для объяснения происходящего нужно взглянуть на график агрегатных состояний. Там показаны твёрдое тело (solid), жидкость (liquid) и пар в виде областей для некой температуры (по горизонтали) и давления (по вертикали). Пунктирами обозначены линии:

  1. По горизонтали – нормальное атмосферное давление.
  2. По вертикали – точки таяния льда и кипения воды.

Видно, что в нормальных условиях пар образуется при температуре 100 градусов, при падении давления вполовину точка кипения смещается до нуля градусов Цельсия. Эффект хорошо знаком альпинистам, знающим – на высоте невозможно сварить мясо. Вода закипает уже при 70-80 градусах Цельсия.

Гребной винт судна образует пузырьки при нормальной температуре воды. Кавитация оказывает пагубное влияние. На рисунке видно, что уже через пару лет эксплуатации поверхность покрывается выщербинами. Кавитация затратна для гидравлических систем.

Образовавшийся пузырёк не лопается за счёт силы натяжения воды и двигается в область с большим давлением, уносясь потоком. Постепенно в передней части образуется вмятина, форма меняется с шаровидной, становясь похожей на эритроцит. Постепенно стенки смыкаются, получается тор (баранка). Образовавшиеся течения создают крутящий момент, фигура пытается вывернуться наизнанку. В результате колба лопается, остаётся некий сгусток турбулентностей (см. рис.). При переходе пара в иное агрегатное состояние выделяется поглощённая ранее энергия. На этом транспорт тепла заканчивается.

Разговор о вечных двигателях: научные небылицы

Виктор Шаубергер

Австрийский физик Виктор Шаубергер в бытность лесником разработал любопытную систему сплава брёвен. По внешнему виду напоминала изгибы натуральных рек, а не прямую линию. Двигаясь по столь своеобразной траектории, дерево быстрее достигало места назначения. Шаубергер пояснял это снижением сил гидравлического трения.

Ходят слухи, что Шаубергер заинтересовался вихревым движением жидкости. Австрийские любители пива на соревнованиях раскручивали бутылку, чтобы придать вращательное движение напитку. Пиво быстрее залетало в брюхо, хитрец выигрывал. Шаубергер самостоятельно повторил трюк и убедился в эффективности.

Не нужно путать описанный случай с вихрем сточной воды, всегда закручивающейся в одном направлении. Сила Кориолиса обусловлена вращением Земли и замечена, как считается, Джованни Баттиста Риччоли и Франческо Мариа Гримальди в 1651 году. Явление объяснено и описано в 1835 году Гаспаром-Густавом Кориолисом. В начальный момент времени за счёт случайного движения потока воды происходит отдаление от центра воронки, траектория закручивается по спирали. За счёт давления воды процесс набирает силу, образуется конусовидное углубление на поверхности.

Виктор Шаубергер ориентировочно 10 мая 1930 года получил патент Австрии за номером 117749 на турбину специфичной конструкции в виде заостряющегося бура. По словам учёного, в 1921 году на её основе сделан генератор, снабжавший энергией целую ферму. Шаубергер утверждал, что КПД устройства близок к 1000% (три нуля).

  1. Вода закручивалась по спирали на входе в патрубок.
  2. На входе стояла упомянутая турбина.
  3. Направляющие спирали совпадали с формой потока, в результате осуществлялась максимально эффективная передача энергии.

Все прочее о Викторе Шаубергере сводится к научной фантастике. Утверждали что он изобрёл двигатель Репульсион, приводивший в движение летающую тарелку, защищавшую Берлин в период Второй мировой войны. По окончании боевых действий комиссовался и отказался делиться собственными открытиями, способными принести большой вред миру на Земле. Его история, как две капли воды, напоминает случившееся с Николой Теслой.

Считается, что Шаубергер собрал первый кавитационный теплогенератор. Имеется фото, где он стоит рядом с этой «печью». В одном из последних писем утверждал, что открыл новые субстанции, делающие возможными невероятные вещи. К примеру, очистку воды. Одновременно утверждая, что его воззрения поколеблют основы религии и науки, предрекал победу «русским». Сегодня сложно судить, насколько оставался приближен к реалиям учёный за полгода до смерти.

Ричард Клем и вихревой двигатель

Ричард Клем (Richard Clem) по собственным словам на исходе 1972 года испытывал асфальтный насос. Его насторожило странное поведение машины после выключения. Начав эксперименты с горячим маслом, Ричард быстро пришёл к выводу, что налицо нечто вроде вечного двигателя. Специфичной формы ротор из конуса, прорезанного спиральными каналами, снабжён разбегающимися форсунками. Раскрученный до некоторый скорости, сохранял движение, успевая приводить в действие масляный насос.

Уроженец Далласа задумал пробный пробег в 600 миль (1000 км) до Эль Пасо, потом решился опубликовать изобретение, но доехал только до Абилена, свалив неудачу на слабый вал. В заметках по этому поводу говорится, что конус требовалось раскрутить до некоторой скорости, а масло нагреть до 150 градусов Цельсия, чтобы все заработало. Устройство демонстрировало среднюю мощность в 350 лошадиных сил при массе 200 фунтов (90 кг).

Насос работал на давление 300 – 500 фунтов на квадратный дюйм (20 – 30 атм.), и чем выше оказывалась плотность масла, тем резвее крутился конус. Ричард вскоре умер, а наработки изъяты. Патент под номером US3697190 на асфальтный насос легко найти в интернете, но Клем на него не ссылался. Нет гарантий, что «работоспособная» версия не изъята ранее из документации бюро. Энтузиасты и сегодня строят двигатели Клема и демонстрируют принцип действия на Ютубе.

Разумеется, это лишь подобие конструкции, изделие неспособно для себя создавать свободную энергию. Клем говорил, что первый двигатель ни на что не годился, пришлось обойти 15 компаний в поисках финансирования. Мотор работает на масле для жарки, температуры в 300 градусов не выдерживает автомобильное. По заявлениям репортёров, аккумулятор на 12 В считается единственным видимым со стороны источником питания устройства.

Двигатель занесли в кавитационные по простой причине: периодически уже горячее масло требовалось охлаждать через теплообменник. Следовательно, внутри нечто совершало работу. Подумав, исследователи отнесли это на эффект кавитации у входа в насос и внутри распределительной системы трубок. Подчеркнем: «Ни один двигатель Ричарда Клема, изготовленных сегодня, не работоспособен».

Несмотря на это, Российское Энергетическое Агентство в базе данных опубликовало информацию (energy.csti.yar.ru/documents/view/3720031515) с оговоркой, что конструкция двигателя (им) напоминает турбину Николы Теслы.

Конструкции кавитационных теплогенераторов

Ссылки на то, что разработки по кавитационным двигателям засекречены, не выдерживают критики. Многие устройства действуют с КПД выше 1, если речь о перекачке тепла. Следовательно, сверхсекретного в этом нет. Конструкторы изготавливают образцы вполне работоспособных кавитационных теплогенераторов. Нельзя сказать, что КПД высок, но определённый потенциал у конструкции присутствует.

Роторные

Центрифуга Григгса считается достойным примером роторных кавитационных теплогенераторов. В устройство закачивается вода, ось начинает вращаться, приводимая в движение электродвигателем. Безусловный плюс конструкции – единственный привод служит насосом в системе отопления и нагревателем жидкой фазы. На поверхности рабочего цилиндра прорезано множество неглубоких отверстий круглой формы, где жидкость образует турбулентности. Нагрев происходит за счёт сил трения в приповерхностном слое и кавитации.

Трубчатые

На скрине из видео показана сборка кавитационного обогревателя с продольным расположением трубок. Конструкция описана в патенте RU 2313036. Помпой нагнетается давление во входной камере, жидкость устремляется сквозь конструкцию из трубок. На входе (см. рис.) образуются пузырьки за счет кавитации по описанной выше схеме. Выходя на той стороне, попадают во вторую камеру с высоким давлением, лопаются и отдают тепло.

На входе перед системой узких трубок давление жидкости повышается помпой, температура в этом месте увеличена. Указанная энергия и забирается образовавшимися пузырьками с паром для обогрева помещений. Как оговорено выше, такой тепловой насос способен на КПД более 100%, о чем заявляет автор конструкции. Каждый убедится самостоятельно, посмотрев видео на Ютуб (название канала – на скрине).

Ультразвуковые

В 2013 году опубликован патент WO2013102247 A1. После полугодового рассмотрения комиссия бюро отдала исключительные права на ультразвуковой кавитационный теплогенератор Иоэлю Дотте Эхарту Рубему. Смысл задумки в преобразовании электрического тока кварцевой пластиной. Колебания звуковой частоты подаются на вход, и устройство начинает создавать вибрации. В обратной фазе волны образуются участки разряжения, где за счёт кавитации образуются пузырьки.

Для достижения максимального эффекта рабочая камера кавитационного теплогенератора выполнена в виде резонатора на ультразвуковую частоту. Полученные пузырьки немедленно уносятся потоком через узкие трубки. Это нужно для получения разряжения, дабы пузырьки в кавитационном теплогенераторе не сомкнулись немедленно, тут же отдав энергию обратно.

Несложно догадаться, что потери минимальные, а трение отсутствует вовсе, поэтому КПД ультразвукового кавитационного теплогенератора шикарный. Учёный говорит, что перекачка тепла возможна с выигрышем в 2,5 раза. Это пока меньше полученного Виктором Шаубергером, но заставит задуматься. Устройство предположительно возможно использовать и для охлаждения помещений.

По ходу текста автор подробно объясняет механизм переотражения волны в кавитационном теплогенераторе, суть которого несущественна в рамках обзора.

Оккультные Новости

альтернативный канал новостей

Секретные проекты: брать энергию из ниоткуда

СТРЕЛЬБА ШАРОВЫМИ МОЛНИЯМИ

— Прежде небольшая демонстрация,— предлагает академик Российской академии естественных наук, доктор технических наук Роман Авраменко. И ставит на стол синюю пластиковую коробочку.

В ее недрах раздается еле слышный свист. Внезапно он обрывается. В тот же миг полумрак лаборатории прорезывает ослепительная вспышка. Глаз успевает уловить, что из прямоугольного “дула” коробочки спицей вырывается узкий плазменный луч цвета сварочной дуги.

— Можете теперь рассказывать, что вы видели прототип “бластера” — того самого легендарного оружия из фантастических фильмов про пришельцев, — буднично так говорит Роман Федорович. Потом добавляет:
— А плазму можно “выстреливать” не только жгутом, но и эдакими сгустками, по сути, искусственными шаровыми молниями.

— Впечатляет,— соглашаюсь я, с интересом разглядывая дырочки, в доли секунды пробитые сначала в металлической фольге, а потом в стальном лезвии бритвы.
Вполне можно представить “коробочку и в ином виде — с прикладом и вороненым раструбом. Прямо как в кино про бесстрашного предводителя солдат будущего капитана Пауэра.

— А подальше стрельнуть можно?

— Считайте, что вы меня об этом не спрашивали.

— Хорошо. Тогда спрошу о другом какое отношение имеет “бластер” к вашему открытию?

— Самое прямое,— поясняет ученый.— В приборе две батарейки по четыре с половиной вольта. А мощность его “выстрела” 20 киловатт. Это равносильно тому, что вы подключили зенитный прожектор к автомобильному аккумулятору, а он стал светить так же ярко, как и от передвижной электростанции. Непонятно? Можно придумать сравнение и попроще. Скажем, налили вы в мензурку 200 граммов, а вылили литр…

Согласитесь, это не просто удивительно — сверхъестественно. В школе — то нас учили совсем другому. Тому, что из розетки, к примеру, можно взять только то, что в ней есть. И, воткнув в сеть кипятильник, можно только потерять энергию. А тут невесть откуда взявшееся приобретение ее.

ЭЛЕКТРОН ЭЛЕКТРОНУ РОЗНЬ

А началось все с того, что Авраменко однажды надоели парадоксы, равно как и устоявшиеся догмы. Ученый работает в НПО “Вымпел” — оборонной фирме, известной своими успехами в электронике, радиолокации и космической связи. С загадочными явлениями сталкивается постоянно. Естественно, возникает желание объяснить. Попробовал. И обнаружил: непонятно многое из того, что в физике принято считать как бы понятным.

Например, договорились, что радиоволны создают электромагнитное поле. А кто-нибудь его мерил? Померили как-то недавно. И оказалось, что электрической составляющей в радиоволнах…нет. И ток в приемной антенне наводят вовсе не электрические силы, а какие-то иные.

Или взять батарейку. Готов спорить: все уверены, что именно она движет по проводам электроны. А вот и не так. Электроны движутся не благодаря электрическому полю, а вопреки ему.

И с радиоактивностью, как выяснилось, тоже не все гладко. При распаде ядер куда-то исчезает часть энергии. Чтобы это не кололо глаза, физики придумали, мол, давайте считать, что энергию уносит некий неуловимый нейтрино. На том и порешили. Но таинственная частица и в самом деле оказалась неуловимой — ее так никто до сих пор и не поймал. Странно ведь? Гигантский термоядерный реактор — Солнце должно насылать их на нас тучами. А может быть, нейтрино нет? Но если нет, то куда девается та самая часть исчезающей энергии?

Во вселенских масштабах давно озадачивает другое — так называемая “скрытая масса”. Неувязка тут вот с чем: по всем законам галактики должны “весить” несравненно больше, чем это наблюдается. Иначе звезды не вправе двигаться так, как они двигаются. Пришлось договориться, что во Вселенной припрятано нечто, чего пока не видно.

Итак, откуда берется лишняя энергия, куда пропадает, где “скрытая масса”? Подобных “странных” вопросов наберется с добрую сотню. И на все Авраменко дает один ответ. Вселенная не пуста, она заполнена волнами электронов. Здесь скрываются и энергия, и масса, и разгадки многих парадоксов.

Читайте также:  "Вечная" магнивая батарейка своими руками

Впору бы засомневаться в столь простом объяснении. Но в его пользу свидетельствуют десятки экспериментов. Они проверены и подтверждены. Стрельба из “бластера” — самый зрелищный. Есть опыты и поскромнее, но убедительнее. Брали ученые, к примеру, сосуд-калориметр, подводили к нему энергию. А оттуда — ничего: ни света, ни тепла, ни звука. Пропадала энергия. Куда? Все в тот же океан электронов. Чудеса…

— Особых чудес тут нет,— говорит Авраменко.— Прежде надо понять, что электрон многолик. Это необязательно эдакий шарик — крохотулечка. Он может быть и волной. А волны бывают маленькими, как рябь в стакане, и большими, как цунами в океане. Но космос безбрежен, поэтому электронная волна может достигать и вселенских масштабов.

Вас же не удивляет, что вода бывает туманом, льдом, морем… Считайте электрон некоей сложной сущностью со множеством проявлений, характер которых зависит от условий наблюдения.

Легко сказать. Я прислушался к своим ощущениям, стараясь определить, укладываются ли в голове столь неожиданные понятия. И не определил. А поэтому задал более практический вопрос:

— Раз мы буквально купаемся в энергетическом океане, то нельзя ли из него попутно кое-что и “зачерпнуть»?

— Можно. И природа нам это постоянно демонстрирует. Например, шаровыми молниями, грозами. Поверьте, никакое трение капелек воды друг о друга не способно зарядить тучу так, чтобы искра молнии пробила воздух толщиной в несколько сотен метров. Но что метры? Зафиксированы атмосферные разряды протяженностью в 150 километров! Как такое можно объяснить?

Грозы и шаровые молнии “выплескивает” электронный океан. Энергия из скрытой от нас формы переходит в явную при определенных условиях. Есть уже прибор, который прогнозирует время и место начала этих процессов. Иными словами, мы умеем предсказывать молнии.

— Предсказывать — это хорошо. А повелевать?

— Но вы же “бластер” видели. Это и есть экспериментальная установка, кoторaя пoкaзывaeт, что мы знаем, как зачерпнуть из энергетического океана.

— Скажу лишь, что необходимо определенное сочетание ионизации и движения среды. Тогда образуется канал, своего рода проводник, по которому начинает перетекать энергия. Но есть и другие способы.

ЭНЕРГИЮ ИЗ “НИЧЕГО”, ВИДИМО, УЖЕ ЧЕРПАЛИ

История техники, как известно, пестрит своими преданиями о загадочных и необъяснимых изобретениях. Иногда судьба сводит и с их авторами. Их всегда слушали с интересом, но никогда не принимали всерьез. Диковинные конструкции списывали на съехавшие набекрень мозги чудаков-изобретателей. Мысль о том, что человек случайно, пусть методом тыка, шагнул дальше других, даже не возникала. Более того, при словах “вечный двигатель” или “энергия из ничего” многие поглядывали на телефон, борясь с желанием вызвать срочную психиатрическую помощь. Но теперь-то есть открытие, которое переворачивает вверх дном устоявшиеся представления. И стоит присмотреться к диким на первый взгляд идеям повнимательнее.

Одно из преданий гласит, что в 1978 году в Швейцарии был построен перпетуум-мобиле. Некий Поль Бауман смастерил его из обрывков проводов, консервных банок и прочего хлама в… тюремной мастерской. Его видел немецкий профессор Стефан Маринов. И ему пришлось признать, что экспериментальный генератор, представляющий собой немыслимую комбинацию конденсаторов (консервных банок) черпал ток как бы из “ничего”.

В 1950 году английский электрик-любитель Сель создал генератор, в основе которого были вращающиеся намагниченные диски. Они нещадно искрили, ионизировали воздух, испуская озон, и почему-то самоускорялись. А однажды произошло следующее. Во время разгона генератор приподнялся, затем оторвался от мотора и самостоятельно воспарил на высоту 15 метров. На этом странности не прекратились. Скорость вращения дисков достигла фантастической величины, вокруг них возник плазменный венчик, и… генератор исчез в облаках.
В США в 1898 году знаменитый Тесла сделал некую машину, которая давала в высокочастотном импульсе 20 миллионов вольт. Вокруг нее, по словам очевидцев, сверкали молнии, светилась ионизированная среда. Но не это главное. Машина непонятным образом передавала энергию на 30 миль без проводов. Там, где находилось приемное устройство, ярко горели лампочки. Потом была построена более мощная установка для передачи энергии от электростанции на Ниагарском водопаде в Париж. Первая мировая война не дала продолжить эти работы. Но в тридцатые годы Теслу видели разъезжающим на странном автомобиле. У того был снят бензиновый мотор и поставлен электрический. И питался он от “конвертера”, который, как утверждал изобретатель, черпал энергию из “ничего”.

В начале двадцатых годов наш соотечественник Чейко рассказал в харьковской газете о том, что он открыл “магнитные лучи” для передачи энергии на расстояние. Более того, построил установку, с помощью которой взрывал динамит, расположенный за много километров. Известно, что на эти работы обратил внимание В.И.Ленин. Осерчал, что в печати в период гражданской войны разглашают стратегические сведения. И распорядился отправить изобретателя к Бонч-Бруевичу в Нижний Новгород. Там его следы и потерялись. А об установке больше никто не слышал…

— Спасибо, Роман Федорович,- говорю я.

Я объяснил. За то, что он работаете в серьезной оборонной фирме. Иначе кто знает, когда бы еще удалось “пробить” открытие. Скорее не удалось бы вовсе. И продолжали бы изобретатель тыкать пальцем в неведомое, не понимая, правильно они попали или нет. Теперь другое дело — появилась научная основа для поиска.

Есть, конечно, опасность, что “затопчут” идею могущественные оппоненты — атомная и термоядерная элита. Ведь эти люди десятки лет делали все чтобы не дать развиться альтернативным источникам энергии. Рискнувшие посягнуть на прежних и нынешних энергетических монстров, как правило, плохо кончали…
Но есть и надежда, что oборонная крыша убережет “возмутителей спокойствия”, а большой уже коллектив единомышленников не даст похоронить перспективные разработки монополистам от науки и техники.

ТАЙНА “ЛЕТАЮЩЕЙ ТАРЕЛКИ”

Следует признать, что ученые вовремя вывели нас на берег бездонного электронного океана. Человечество уже доедает последнее из своих энергетических амбаров. А впрок еще-ничего незапасло, кроме губительного «мирного атома” и термоядерного миража. Стало быть, спасемся?

— Уже сегодня, говорит Авраменко,- можно приступить к проектированию электростанций нового типа, абсолютно безвредных для окружающей среды. Постепенно заменим ими тепловые, водяные и атомные станции. А по сути, подключимся к энергетическим запасам Вселенной — неисчерпаемым и экологически чистым.

Впрочем, .любой из нас, дав волю фантазии, способен представить выгоды неограниченного доступа к энергии. Тут и необычные способы ее передачи и электромобили, и суда…

— И космические корабли,- добавляет ученый. — По нашим прикидкам получается, что необязательно брать топливо на борт. Межпланетный или межзвездный корабль вполне может лететь по волнам электронов, от них же и отталкиваясь.

— Вот мы и подошли почти вплотную к “летающим тарелкам”. Говорят, что вы приоткрыли их тайну. Правда?

— Скажем так: мы предположили, почему они могут передвигаться бесшумно и с огромной скоростью. Конечно при условии, что “тарелки” существуют как технические средства.

— А вы в это верите?

— Я лишь не отрицаю. Так вот, в одной из лабораторий Физико-технического института АН СССР вместе с В. Николаевой и Г. Мишиным мы провели любопытные опыты. Брали металлические шарики, ионизировали среду вокруг них и выстреливали из особого устройства со скоростью 2 километра в секунду. Это 7200 километров в час. По всем законам столь стремительно летящий объект обязан был создавать мощную ударную волну. А он не создавал. Летал так, словно бы его ничто не тормозило. Мы установили, что плазменная оболочка вокруг объекта сводит к минимуму сопротивление набегающего потока. Полагаем, что и тут не обходится без влияния электронного океана.

Что ж, выводы ученых подкрепляют наблюдения очевидцев. Почти все они сообщали о плазменных оболочках, видимых вокруг НЛО. Правда, о назначении плазменного облака никто толком не догадывался, считая свечение просто следствием работы электромагнитных движителей. А получается, что делается это специально. Нетрудно догадаться, что и мы можем слегка “подтянуться” за инопланетянами. Установи источник плазмы пока на самолете и летай так же быстро. А потом, глядишь, и до “тарелок” дело дойдет. Знать бы еще, как “им” удается мгновенно исчезать и появляться.

— Хотите под занавес еще один парадокс? — улыбается в ответ Авраменко.- Их в квантовой теории, как вы убедились, хватает. А ведь мы опираемся именно на нее, пытаясь разобраться с электронными волнами. Есть, к примеру, такая гипотеза: все предметы, которые нас окружают, да и мы с вами,- это не более чем “область высокой концентрации волн”. И оказалась она в данном месте лишь благодаря определенным условиям. А вдруг можно создать такие условия, что эта самая “область” сконцентрируется где-нибудь в другом месте? И мы с вами мгновенно окажемся, скажем, за миллионы километров отсюда…

— Пошутил он, что ли? — подумал я, уже попрощавшись.- Хотя, кто знает…

Журнал “Чудеса и приключения”, N2-3, 92, стр.29-31.

3 странных эксперимента, которые не следует повторять

Эксперимент – ключевой инструмент традиционной науки. Но некоторые научные эксперименты являются просто невероятно причудливыми.

1. Три Иисуса в одной больнице
Это подлинная история о трёх шизофрениках, каждый из которых верил, что он – Иисус Христос. В 1959 году социальный психолог Мильтон Рокич хотел выяснить, насколько сильными могут быть иллюзии пациентов. Для этого он собрал трёх пациентов, считавших себя Иисусом, и заставил их жить вместе в одной психиатрической больнице в штате Мичиган в течение двух лет. Рокич надеялся, что «Иисусы» откажутся от своих воображаемых личностей, столкнувшись с другими людьми, считающими себя той же персоной. Но этого не произошло. Поначалу троица постоянно спорила на тему, кто из них более свят. Если верить Рокичу, однажды один из Иисусов воскликнул: «Вы должны поклоняться мне!». На что другой ответил: «Я не буду поклоняться тебе, ибо ты – тварь! Тебе лучше жить собственной жизнью, очнись, ведь факты налицо!»

2. Рассвирепевший бык
Дельгадо был среди небольшой группы исследователей, развивавших новый тип электрошоковой терапии. Суть его заключалась в следующем: сначала исследователи имплантировали крохотные провода и электроды в череп. Затем они посылали электрические импульсы в разные участки мозга, пробуждая эмоции и вызывая движения тела. Целью исследования было изменить психическое состояние испытуемых: вывести из депрессии или успокоить агрессию. Но Дельгадо вывел эту науку на новый уровень, когда изобрел «стимосивер» – чип размером с монету, который можно было имплантировать в голову пациента и управлять им дистанционно. Дельгадо уже рисовал в своем воображении утопические картины «психоцивилизованного общества», где его технология позволит каждому менять своё психическое состояние одним нажатием кнопки.

В течение нескольких лет Дельгадо экспериментировал с обезьянами и кошками, заставляя их зевать, драться, играть, спариваться и спать – и всё это с помощью дистанционного управления. Опробовал он и практическое управление гневом: в одном из экспериментов он применил свой стимосивер к агрессивной обезьяне. Дельгадо дал пульт управления соседу обезьяны по клетке, который быстро догадался, что нажатие кнопки успокаивает его раздражительного приятеля. Следующим этапом для Дельгадо стал эксперимент над быками в Испании. Он начал с того, что имплантировал стимосивер нескольким быкам и проверил оборудование, заставляя животных поднимать ноги, поворачивать головы, ходить по кругу и мычать по сто раз подряд. Затем настал момент истины. В 1965 году Дельгадо вышел на арену с бойцовским быком по имени Лючеро – свирепым зверем, известным своим дурным нравом. Когда Лючеро понёсся на него, Дельгадо нажал кнопку, заставив животное резко замереть. После следующего нажатия бык начал бегать кругами по арене.

3. Один в темноте
Для некоторых людей одиночное заключение – это наказание. Для других же – это путь к научному открытию. В 60-х годах, на пике космической гонки, учёных интересовало, как люди перенесут долгие космические перелёты или жизнь в бункерах в случае ядерной войны. Сможет ли человек справиться с продолжительной изоляцией? Какими будут циклы сна без смены дня и ночи? Мишель Сифр, 23-летний французский геолог, решил ответить на эти вопросы времён Холодной войны, поставив эксперимент на самом себе.

Два месяца подряд в 1962 году Сифр прожил в тотальной изоляции, будучи погребённым внутри стометрового подземного ледника в французско-итальянских приморских Альпах без часов и дневного света, что не позволяло определять время. Внутри пещеры температура была на пределе замерзания воды, а влажность – на уровне 98%. Замёрзший и промокший Сифр страдал от гипотермии, а глыбы льда регулярно обрушивались рядом с его палаткой. Но за 63 дня, проведённых под землей, он лишь однажды впал в безумие.

В один из дней Сифр начал петь и танцевать твист. Всё остальное время он вёл себя нормально. Когда Сифра вызволили, это случилось 14 сентября, он считал, что сейчас только 20 августа. Его мозг потерял чувство времени, но, что довольно странно, его тело – нет. Находясь в пещере, Сифр звонил своим ассистентам каждый раз, когда просыпался, ел и ложился спать. Как выяснилось, он непреднамеренно сохранил регулярные циклы сна и бодрствования. Средняя продолжительность его суток оказалась немногим больше 24 часов. Так Сифр открыл, что у человека есть внутренние часы.

Ссылка на основную публикацию