Тюнинг ВАЗ 2109
Замена штатных ламп на светодиодные
В настоящее время замечаю, что у всех новых иномарок в задних фонарях в качестве стоп-сигналов, габаритных огней, указателей поворота используются исключительно светодиодные источники света вместо привычных ламп накаливания. Как оказалось, это неслучайно. По результатам исследований, использование в стоп-сигналах светодиодов вместо обычных ламп накаливания дает водителю находящегося позади автомобиля дополнительные мгновения для маневрирования или экстренного торможения. За это время автомобиль, движущийся со скоростью со скоростью 100 км/ч проходит 5-6 м. Дело в том, что для достижения полной яркости лампе накаливания требуется около 0,3 секунды, в то время как светодиод разгорается почти мгновенно, примерно за 70 наносекунд. Думаю, порядок этих цифр говорит о многом.
Также, светодиоды лучше ламп накаливания по показателям удельной светоотдачи на ватт мощности и сроку службы. Так, время наработки на отказ у светодиодов приближается в 100 000 часов против примерно 2000 у ламп накаливания. Также лампы накаливания обычно выходят из строя не по причине перегорания спирали, а из-за воздействия сильных вибраций, особенно при качестве наших дорог. Светодиоды же совершенно невосприимчивы к подобного рода воздействиям, что дает им серьезное преимущество при использовании в автомобилях.
Далее рассмотрим типы ламп, применяемых в автомобиле ВАЗ 2109, и какие существуют подходящие для их замены лампы на светодиодах.
АКГ 12-60/55 (60/55 Вт)
Это галогенные лампы, они имеют две спирали ближнего и дальнего света, цоколь H4. Устанавливаются в головных фарах автомобиля. Светодиодные аналоги хоть и существуют, но при их установке свет фар не будет удовлетворять существующим требованиям (не формируется пучок света заданной формы), фары будут светить куда попало и могут слепить встречных водителей, так что применять их не стоит. Лампы с окрашенной колбой (синего, желтого цветов) изменяют цвет луча, и при определенных условиях, например в дождливую погоду, ухудшается видимость.
А 12-21-3 (21 Вт)
Наиболее распространенный тип ламп в переднеприводных ВАЗах. Устанавливаются в стоп-сигналы, указатели поворотов, задние противотуманные фары, фонари заднего хода. Для замены существуют различные светодиодные лампы основе smd-светодиодов.
А 12-10 (10 Вт)
Используются в задних габаритах. В качестве замены можно попробовать лампы с подходящим цоколем на smd-светодиодах.
А 12-4-1 (4 Вт)
Используются в головных блок-фарах в качестве габаритных огней, а также для освещения вещевого ящика. Для их замены существует множество светодиодных ламп, с разным количеством светодиодов. Есть даже светодиоды, цвет свечения которых практически неотличим от ламп накаливания. При выборе аналога необходимо следить за тем, чтобы лампа на светодиодах поместилась в штатное место в блок-фаре.
А 12-1.2 (1 Вт)
Такая лампа используется для подсветки комбинации приборов, кнопок на панели приборов. Для их замены есть множество светодиодных аналогов различных цветов. Лучше выбирать аналоги с одним smd–светодиодом (бОльшая площадь и яркость свечения). Подробнее о такой доработке подсветки панели приборов можно посмотреть здесь.
АС 12-5-1 (5 Вт)
Эти лампы устанавливаются в плафоне салонного освещения и фонарях подсветки заднего номера. Для их замены есть множество светодиодных аналогов. В салон для увеличения яркости можно установить лампу на 6-9 светодиодах. Для подсветки номера — любую с подходящими габаритами и достаточной (но не чрезмерной) яркостью.
А 12-5-2 (5 Вт)
Применяется в повторителях указателей поворотов, а также в переносной лампе. Для поворотников можно найти лампы на светодиодах с аналогичных цоколем.
А 12-5 (5 Вт)
Применяется в качестве лампы освещения подкапотного пространства. Это ее единственное применение в ВАЗ 2109. Для замены подойдет любая светодиодная лампа с соответствующим цоколем.
АМН 12-3-1 (3 Вт)
Применяется только для подсветки розетки прикуривателя. Для замены подойдет любая светодиодная лампочка с соответствующим цоколем.
Лампы в противотуманных фарах
Если ваш ВАЗ 2109 оснащен противотуманными фарами, то в них установлены галогенные лампы мощностью 55 Вт. Для них тоже существуют светодиодные аналоги, но такой яркости как от галогенок от них не получить. При этом их можно использовать разве что в качестве дневных ходовых огней.
Полезная информация:
При замене ламп накаливания на светодиодные в габаритах и стоп-сигналах при рабочей бортовой системе контроля (БСК), она будет сигнализировать об обрыве нитей ламп накаливания соответствующих ламп вследствие гораздо меньшего тока в этих цепях. Для приведения работы этой системы в соответствие, при сохранении функции контроля исправности ламп необходимо выполнить доработку реле контроля исправности ламп (РКИЛ). Об этом можно почитать в этой статье.
Поделки своими руками для автолюбителей
Плавный розжиг и затухание светодиодов, схема
Простой электро тюнинг автомобиля с помощью плавно вспыхивающих и гаснущих светодиодов. Отечественные автомобили выпускаются с расчётом на среднего потребителя. Многих автолюбителей это не устраивает, поэтому такое авто стремятся доработать. Прежде всего, это касается подсветки приборной доски и салона.
Устройство плавной регулировки светодиодной подсветки можно собрать самому. В интернете легко найти интересную схему.
Без всякого сомнения, самой простой и надёжной является схема на полевом транзисторе.
Рассмотрим подробнее.
Подсветка приборки.
Когда говорят о доработке приборной панели, то имеют в виду тюнинг электрики, который позволяет с помощью светодиодов сделать её уникальной.
Немного о работе схемы….
После включения зажигания, схема запитывается напряжением +12 V и переводится в режим ожидания.
При включении габаритов управляющее напряжение +12 V через цепочку, состоящую из диода D2 и резистора R1, поступает на транзистор КТ 503. Транзистор открывается. Электролитический конденсатор С1 заряжается.
Плавно растущее напряжение, подаётся на полевой транзистор VT1. Он плавно открывается, и постепенно увеличивает выходное напряжение, поступающее на светодиоды. Происходит их плавное загорание.
При выключении габаритов, снимается управляющее напряжение, и закрывается транзистор КТ 503.
Электролитический конденсатор С1 плавно разряжается через R3. Следовательно, уменьшается напряжение на транзисторе VT1, а значит и выходное напряжение.
По мере разрядки конденсатора гаснут светодиоды.
Когда конденсатор полностью разрядится, схема снова переходит в режим ожидания, при котором потребляемый ток почти отсутствует.
Нагрузкой транзистора VT1 может быть сборка на светодиодах LED или светодиодная лента.
Транзистор IRF 9540 может работать с нагрузкой до 140 Вт.
В схеме допускается производить регулировки:
• резистором R1 регулируется скорость загорания светодиодов. Чем больше номинал, тем дольше загорание;
• резистором R3 регулируется скорость гашения светодиодов. Чем больше номинал, тем дольше гашение;
• ёмкость С1 влияет на скорость загорания и гашения светодиодов. Чем больше номинал, тем скорость меньше.
Подсветка салона
Плавная подсветка салона имеет свои достоинства:
во-первых, при мгновенном включении света, глазам необходимо время, чтобы к нему привыкнуть. В отдельных случаях это вызывает болевые ощущения для глаз;
во-вторых, плавное изменение освещения положительно влияет на эстетику салона, и делает его более привлекательным.
Светодиодная подсветка включается после срабатывания на дверях концевых выключателей.
Схема имеет вид:
В отличие от предыдущей схемы, управляющим здесь является напряжение –12 V, поступающее с концевых выключателей.
По сравнению с предыдущей, в схеме убраны отдельные элементы: транзистор КТ 503, диод D2 и резистор R1, но принцип работы прежний.
Схемы в формате .lay — скачать…
Сборка схемы
Элементы схемы размещаются на печатной плате, которая изготавливается с определённой последовательностью:
1. Готовим текстолитовую пластинку. Её размер зависит от количества элементов и их расположения. Вырезанную пластинку необходимо обработать мелкой наждачной бумагой и обезжирить.
2. Используя программу Sprint Layout, рисуем будущую плату. Для распечатывания рисунка, используется лазерный принтер в режиме высокой чёткости и качества изображения.
В программе выбирается режим, при котором будет напечатан только слой с дорожками без обозначений.
Рисунок распечатывается на глянцевую страницу журнала или на фотобумагу.
3. К нагретой пластинке текстолита прикладываем распечатку и прижимаем горячим утюгом. Держим утюг несколько минут.
4. После остывания опускаем пластинку в холодную воду, и удаляем бумагу с поверхности.
5. В приготовленное хлорное железо, опускаем пластинку, закреплённую на кусочек пенопласта. Во время вытравливания можно вынимать и контролировать плату.
6. Протравленную пластинку отмываем в воде, и очищаем дорожки растворителем или наждачной бумагой.
7. В готовой плате сверлим отверстия для монтажа элементов. Используются свёрла 0,6 мм.
8. Облуживаем плату. Самый доступный способ — это кисточкой смазать плату флюсом, и пролудить паяльником. Важно не перегревать дорожки, чтобы они не отслоились.
9. Устанавливаем на плату элементы схемы и пропаиваем.
10. В конце работ необходимо очистить плату от остатков флюса. У чистой платы не будет замыканий между дорожками.
В итоге рассмотрения, надо отметить, что описанные схемы успешно используются не только для электро тюнинга автомобиля. Их часто используют с различными устройствами, где есть питание +12 V.
Автор; Арсений Санкт-Петербург, Россия
Сообщества › ВАЗ: Ремонт и Доработка › Блог › Плавный розжиг и затухание освещения салона
Давно хотел и наконец то решился сделать плавный розжиг и плавное затухание освещения салона (будь то открытие дверей или ручное его включение). Поискав немного в интернете, выбрал наиболее удачную на мой взгляд схему, чуть подправил ее под себя и вчерашним вечером принялся к ее реализации.
Ниже опубликовал видео, демонстрирующее процесс работы данной примочки. Качество, к сожалению, не очень, так так снимал ночью и на телефон.
Метки: розжиг, плафон, освещение, плавный пуск
Комментарии 28
Быстро гаснет, сколько максиум можно сделать чтоб подсветка не тухла?)
Не могу сказать, не засекал. Сделал так, как мне понравилось.
Классная схемка! Возьму на вооружение!
эти подстстроечные резисторы жутко ненадёжны. рекомендую заменить на постоянные
ну и резистор в затворе нафиг не нужен, там же бесконечное сопротивление.
а так, малацца, респект
я, для подобных фигнюшек, обычно использую мосфиты от дохлых мат. плат, я их всегда выпаиваю, полезнейшая в хозяйстве весчь, у меня уже их пару литров скопилось
Я их специально поставил, так как конденсаторы (из за ТКЕ) будут не совсем стабильны в разные времена года.
эти подстроечники дохнут от вибрации, пыли, и конденсата
в принципе, даже если будет нарушен контакт, ничего страшного не произойдёт: ток пойдёт по всей “подкове”, и время зажигания/погасания будет максимальным
Время покажет выживут они или нет. Если что, заменить их на постоянные дело нескольких минут.
Подстроечники действительно, ужасные. В мусорку их по умолчанию.
молодец классно а у меня в десятке ужу было встроенно это только от завода
Я сначала хотел купить готовый плафон, а потом подумал — а зачем деньги тратить)))
а у меня не в плафоне стоит а плафон запитан через мозги и мозги управляют им
Это по ходу в БСК уже встроена такая функция, так как питание на плафон вроде как от него идет.
а у меня не в плафоне стоит а плафон запитан через мозги и мозги управляют им
Это иммобилайзер плавно гасит всё. единственная полезная функция этой адовой коробки
Если он не активировал, функция работает?
Должна работать. сказал бы точней, если бы он у меня физически был. Но на сколько я знаю, то плавное гашение не завязано ни на что, оно само по себе работает на плате иммо.
Это иммобилайзер плавно гасит всё. единственная полезная функция этой адовой коробки
это не иммобилайзер я его давно вырезал и туда поставил кнопку старт стоп тоже с иммобилайзером это бортовой компьютер гасит и у меня с него даже можно регулировать мощность света у меня бортовик мультитроник
штатное гашение от иммо. 100% инфа. А то что ещё и мультик это делает, хорошо.
это не иммобилайзер я его давно вырезал и туда поставил кнопку старт стоп тоже с иммобилайзером это бортовой компьютер гасит и у меня с него даже можно регулировать мощность света у меня бортовик мультитроник
скорей всего это просто бонус бортовика. А так, курите схемы электрооборудования
пер. резисторы со временем пылью не забьются?
KIA Spectra «CINΣɌO STAƝƝUM» › Бортжурнал › ► Плавный розжиг/затухание светодиодов (схема)
Приветствую Вас, дорогие друзья! Постоянные читатели наверняка помнят запись в моём БЖ с просьбой помочь разобраться со схемой плавного розжига. Хотелось бы кратко напомнить, в чём заключалась проблема. Тогда, уже почти месяц назад, я спаял всё согласно схеме, найденной на просторах Драйва, но работал плавный розжиг, к сожалению, не так, как должен. Перед тем, как начать плавно разгораться, диоды тускло мигали один раз (иногда просто тускло горели) и потом только начинается плавный старт. Светодиоды должны не сразу разжигается, а через 3-4 секунды, но изначально не мигать и не светиться вообще. Схему пробовал собирать как на монтажной плате, так и без платы вовсе – но диоды все равно тускло мигали. Перепробовал я тогда множество различных вариантов, но так и не смог добиться правильной работы.
Перечитав кучу форумов, пообщавшись со многими людьми, пришел в итоге к выводу, что схема является неверной, обрубком правильной рабочей полной схемы. Хотелось бы отметить, что “обрубленная” схема умеет только плавно разжигать диоды (да и то с миганием), а плавного затухания уже нет. Хотел также поблагодарить Тиму за советы!
Итак, теперь объясню, в чём же была ошибка в схеме, из-за которой я больше месяца провозился с изготовлением платы плавного розжига. Так как я достаточно далек от радиотехники, то объясню простым языком. В правильной полной схеме линия, подключенная к «постоянному минусу» разорвана установленным транзистором КТ503 и замыкается только после подачи на транзистор положительного управляющего сигнала. То есть получается, что плата плавного розжига постоянно подключена к «плюсу» и «минусу» («минус» общий на светодиоды и на элементы платы), но на светодиоды «минус» “поступает”, а на элементы платы – нет (так как линия разорвана транзистором КТ503). В “обрубленной” схеме почему-то этот транзистор был убран вовсе, но минус при этом остался общим, поэтому и работала схема не совсем правильно, и не было плавного затухания.
Принцип работы схемы (информация из интернета):
Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.
“Обрубленная” схема с небольшими поправками подходит только для подключения с управлением по «минусу» (например для подсветки салона, где управление от концевиков дверей). При таком раскладе нужно все равно разорвать «общий минус» («минус» с ленты постоянно подключен к питанию, «минус» с платы является управляющим). Ниже привожу правильные схемы с «управляющим минусом и плюсом» соответственно.
Схема с управляющим минусом:
Схема с управляющим плюсом:
В этот раз изготавливать схему решил методом ЛУТ (лазерно-утюжная технология). Делал я это первый раз в жизни, сразу скажу, что ничего сложного нет. Для работы нам понадобится: лазерный принтер, глянцевая фотобумага (или страница глянцевого журнала) и утюг.
К О М П О Н Е Н Т Ы:
■ Транзистор IRF9540N
■ Транзистор KT503
■ Выпрямительный диод 1N4148
■ Конденсатор 25V100µF
■ Резисторы:
— R1: 4.7 кОм 0.25 Вт
— R2: 68 кОм 0.25 Вт
— R3: 51 кОм 0.25 Вт
— R4: 10 кОм 0.25 Вт
■ Односторонний стеклотекстолит и хлорное железо
■ Клеммники винтовые, 2-х и 3-х контактные, 5 мм
! ! ! При необходимости, изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора. ! ! !
═════════════════════════════════════════
Р А Б О Т А:
═════════════════════════════════════════
【1】В этой записи подробно покажу, как изготавливать плату с управляющим плюсом. Плата с управляющим минусом делается аналогично, даже чуть проще из-за меньшего количества элементов. Отмечаем на текстолите границы будущей платы. Края делаем чуть больше, чем рисунок дорожек, а затем вырезаем. Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.
Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.
Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нельзя руками прикасаться к поверхности платы.
【2】Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений. Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. Программу и чуть доработанные мной схемы залил для Вас на Яндекс.Диск.
С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему.
Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.
【3】Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.
Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.
Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.
【4】С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.
После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.
【5】Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).
【6】Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.
【7】Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.
【8】После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.
После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.
Сообщества › Электронные Поделки › Блог › Плавный розжиг и затухание освещения салона
Давно хотел и наконец то решился сделать плавный розжиг и плавное затухание освещения салона (будь то открытие дверей или ручное его включение). Поискав немного в интернете, выбрал наиболее удачную на мой взгляд схему, чуть подправил ее под себя и вчерашним вечером принялся к ее реализации.
Ниже опубликовал видео, демонстрирующее процесс работы данной примочки. Качество, к сожалению, не очень, так так снимал ночью и на телефон.
Метки: освещение, плафон, плавный пуск
Комментарии 43
подскажите, а биполярный транзистор подойдёт сюда(КТ837Д)?
а печатку в спринте рисовал? если да, то можешь мне скинуть?
Вечером посмотрю на домашнем компьютере, если осталась то скину.
в качестве дружеской критики:
1. вместо никнейма лучше було бы оставить полигон для тепло-отвода, да и вообще развести плату так, чтобы травить не надо было, а можно было бы расчертить канц.ножом на изолированные площадки
2. провода к плате не паять, а присоединять разъемом — когда захотите улучшить девайс, можно было просто его заменить
Тепло-отвод явно лишнее…Транзистор мощный, а диоды в плафоне потребляют совсем чуть чуть. Оно выше температуры окружающей среды и не нагревается. По поводу разметки платы канц ножом — ну не люблю я такой колхоз. Лучше потрачу лишние пол часа — час, но сделаю все красиво.
Разъем стоит, только не на самой плате, а на пяти сантиметровом отрезке проводов. Так удобнее размещать устройство под потолком — сначала прилепил как надо, а потом и провода соединил.
а каким способом ты травил плату? каким наносил на тексталит ее?
Дорожки наносил с помощью фоторезиста. Травил в растворе перекиси водорода, соли и лимонной кислоты.
а я помню, раньше лаком дорожки рисовал… травил в хлорном железе))) так уже не делают?))) ппц я отстал…
Ну лаком сейчас уже наверное точно никто не рисует, проще тем же ЛУТом сделать. А вот хлорное железо я сам до недавнего времени использовал, пока не узнал про способ с перекисью водорода — и достать проще, и дешевле, да и все вокруг не пачкает)))
а каким способом ты травил плату? каким наносил на тексталит ее?
ТекстОлит. А вообще-то — это стеклотекстолит.
ну все, с умничал…
Нравится быть не грамотным — оставайтесь…
а вы часто пользуетесь текстолитом? раз тут оказался стеклотекстолит… я думаю и так понятно, что это за материал… ошибка в названии — да, запомнил как правильно. но. ошибкой не считаю, что материал для плат называю просто текстолитом. думаю многие так и говорят, что б не удлинять и так понятное слово. это как всегда добавлять аккумулятор свинцово-кислотный в машине. думаю и вы не добавляете. стеклотекстолит = текстолит. суть того, о чем идет речь ничуть не меняется.
Дело в том, что текстолит — это ткань пропитанная клеем. Он коричневого цвета.
www.ru.all.biz/img/ru/catalog/2068698.jpeg Он не металлизируется и не используется для производства печатных плат.
А стеклотекстолит — это стеклоткань пропитааная эпоксидной смолой, он светоложёлтого цвета. И свойства материалов сильно отличаются.
Ещё в качестве диэлектрика для печатных плат используют гетинакс — это бумага, пропитанная клеем. Тоже, кстати, коричневого цвета.
В бытовой технике часто используется гетинакс (ранее преимущественно, только гетинакс использовался). Стеклотекстолит стал его вытеснять пару десятилетий назад.
Да, я давно занимаюсь электроникой, 40 лет уже. Первую печатную плату разработал и изготовил в возрасте 12 лет, т.е. в 1982 году…
Плавный розжиг и затухание светодиодов: особенности, устройство, схема
Помимо чисто декоративной функции, например, подсветки автосалона, применение плавного включения, или розжига, имеет основательное практическое значение для светодиодов – существенное продление срока службы. Поэтому рассмотрим, как сделать своими руками устройство для решения такой задачи, стоит ли вообще самостоятельно его мастерить или лучше купить готовое, что для этого потребуется, а также какие варианты схем при этом доступны для любительского изготовления.
Покупать или делать самому
Первейший вопрос, возникающий при необходимости включения в схему модуля плавного розжига светодиодов, это сделать ли его самостоятельно или купить. Естественно, легче приобрести готовый блок с заданными параметрами. Однако у такого способа решения задачи есть один серьезный минус – цена. При изготовлении своими руками себестоимость такого приспособления снизится в несколько раз. Кроме того, процесс сборки не займет много времени. К тому же, существуют проверенные варианты устройства – остается лишь обзавестись нужными компонентами и оборудованием и правильно, в соответствии с инструкцией их соединить.
Обратите внимание! Лэд-освещение находит широкое применение в автомобилях. Например, это могут быть дневные ходовые огни и внутренняя подсветка. Включение блока плавного розжига для светодиодных ламп позволяет в первом случае существенно продлить срок эксплуатации оптики, а во втором – предотвратить ослепление водителя и пассажиров резким включением лампочки в салоне, что делает подсветительную систему более визуально комфортной.
Что нужно
Чтобы грамотно собрать модуль плавного розжига для светодиодов, потребуется набор следующих инструментов и материалов:
- Паяльная станция и комплект расходников (припой, флюс и проч.).
- Фрагмент текстолитового листа для создания платы.
- Корпус для размещения компонентов.
- Необходимые полупроводниковые элементы – транзисторы, резисторы, конденсаторы, диоды, лед-кристаллы.
Однако прежде чем приступить к самостоятельному изготовлению блока плавного пуска/затухания для светодиодов, необходимо ознакомиться с принципом его работы.
На изображении представлена схема простейшей модели устройства:
В ней три рабочих элемента:
- Резистор (R).
- Конденсаторный модуль (C).
- Светодиод (HL).
Резисторно-конденсаторная цепь, основанная на принципе RC-задержки, по сути и управляет параметрами розжига. Так, чем больше значение сопротивления и емкости, тем дольше период или более плавно происходит включение лед-элемента, и наоборот.
Рекомендация! В настоящий момент времени разработано огромное количество схем блоков плавного розжига для светодиодов на 12В. Все они различаются по характерному набору плюсов, минусов, уровню сложности и качеству. Самостоятельно изготавливать устройства с пространными платами на дорогостоящих компонентах нет резона. Проще всего сделать модуль на одном транзисторе с малой обвязкой, достаточный для замедленного включения и выключения лед-лампочки.
Схемы плавного включения и выключения светодиодов
Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:
- Простейшая.
- С функцией установки периода пуска.
Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.
Простая схема плавного включения выключения светодиодов
Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.
В ее основе лежат следующие комплектующие:
- IRF540 – транзистор полевого типа (VT1).
- Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
- Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
- Led-кристалл.
Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:
- При запитывании цепи через блок R2 начинает течь ток.
- Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
- Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
- Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.
Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.
Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).
Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:
- Сила тока стока – в пределах 23А.
- Значение полярности – n.
- Номинал напряжения сток-исток – 100В.
Важно! Ввиду того, что быстрота розжига и затухания светодиода полностью зависит от величины сопротивления R3, можно подобрать необходимое его значение для задания определенного времени плавного пуска и выключения лед-лампочки. При этом правило выбора простое – чем выше сопротивление, тем дольше зажигание, и наоборот.
Доработанный вариант с возможностью настройки времени
Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента – R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.
Приведенные выше версии схем предполагают управление по плюсу, однако в некоторых ситуациях требуется контроль по минусу. В таком случае система будет иметь обратную полярность. Поэтому в ней нужно поставить конденсатор наоборот – чтобы плюсовой заряд шел на транзисторный исток. Кроме того, необходимо заменить и сам транзистор, теперь он должен быть p–канального типа, к примеру, IRF9540N.
Основные выводы
Плавный розжиг светильников на основе светодиодов популярен в автоподсветке. Кроме того, медленное включение лед-элементов позволяется продлить срок их службы, независимо от места установки. Такое устройство можно купить или изготовить самостоятельно. В последнем случае оно обойдется гораздо дешевле. Для сборки потребуются следующие материалы и инструменты:
- Паяльник с паяльными принадлежностями.
- Основа для платы, например, кусок текстолита.
- Корпус для крепления элементов.
- Резисторы, транзисторы, диоды, конденсаторы и прочие полупроводниковые элементы.
Механизм прибора плавного розжига для светодиодов работает на принципе задерживания, возникающего в цепи «резистор-конденсатор». При этом существуют две основные схемы – простейшая и с возможностью регулировки времени зажигания. Последняя отличается от первой наличием двух резисторов с контролируемым сопротивлением. Чем выше его значение, тем дольше период медленного пуска, и наоборот.
Если вы имеете опыт сборки схемы плавного розжига светодиодов, рассмотренных или иных версий, обязательно поделитесь полезным опытом в комментариях.
Как сделать плавное выключение света в салоне авто?
Простая схема плавного гашения салонного света
Я собираюсь рассказать Вам здесь о простой схеме плавного выключения освещения в салоне автомобиля. В её состав входит небольшой конденсатор и несколько необходимых для работы этого устройства вспомогательных элементов. Несмотря на кажущуюся простоту, схема может сгодиться для любого автомобиля. Всё, что для этого потребуется – это бережно и аккуратно припаять её к двум клеммам плафона салонного освещения.
Теперь осветим подробнее, как должна работать данная схема. Спрямляющий диод призван защитить устройство от переполюсовки и надёжно препятствовать непредвиденной утечке тока в противоположном направлении. Тем самым полностью предотвращается случайный разряд заряженного конденсатора в цепь.
Необходимо также учесть, что в ряде автомобилей плафон салона изначально запараллелен с багажной лампочкой. При большем расходе тока нам потребуется, соответственно, и большая ёмкость, которая задействована в нашем устройстве.
От диода ток прямиком направляется на плафон, а также и на сопротивление величиной 1 Ом. Основная функция вспомогательного резистора – ограничение силы тока, напрямую влияющего на зарядку конденсатора. Если подключенный к сети конденсатор окажется полностью разряженным, то произойдёт резкий всплеск потребляемого тока. Конденсатор в данном случае – потенциальный источник короткого замыкания. Именно это может явиться причиной поломки предохранителя, защищающего электросеть от короткого замыкания.
Заряженный конденсатор, как только освещение в салоне будет отключено, медленно начинает отдавать наработанную энергию обратно в сеть. По мере того, как будет происходить разряд, напряжение в осветительной цепи неуклонно снижается. Создаётся эффект плавного угасания лампочки в салоне. Длительность его напрямую зависит от ёмкости конденсатора. Чем больше ёмкость, тем медленнее в салоне гаснет свет. И наоборот.
При замене обычных лампочек светодиодами ёмкость конденсатора придётся уменьшить, добавив в схемку «дотушивающий» резистор. Это связано с нелинейностью падения тока в светодиодах. Дело в том, что ток, проходящий через светодиод, при разрядке на него конденсатора нелинеен, и поэтому свет в салоне будет затухать неравномерно. Без такого резистора гаснущий вначале плавно плафон в конце будет продолжать светиться ещё около минуты, сохраняя 10% яркости.
Как сделать плавное выключение света в салоне авто?
Описание схемы замедленного выключения света: Первый транзистор – задержка отключения света. Конденсатор и резистор 1М определяют время, в течение которого будет держаться свет. Чем больше емкость конденсатора и выше номинал резистора, тем дольше будете наблюдать дополнительный свет. «При подключении вывода “переключатель” к земляному проводу при помощи “ползункового” переключателя происходит мгновенный заряд емкости конденсатора через резистор номиналом 5 (кОм). Диод после резистора установлен не случайно. При открытии дверей на серый провод клемной колодки подается земля, а (как выяснилось в результате экспериментов) при закрытии двери земля не только пропадает, а на смену ей приходит +12 вольт. Именно с целью блокировки последующего положительного потенциала, мгновенно разряжающего емкость конденсатора, в схему был добавлен диод». В качестве усилителя в схему включается второй транзистор. Включенный в его базу резистор задает яркость лампочки. Для различных видов ламп значение сопротивления на резисторе варьируется от 300 до 1000 Ом. Параллельный резистор позволяет вовремя потушить лампочку, в противном случае из-за падения потребляемого тока лампа еще будет светиться до 10% накала.
Тюнинг ВАЗ 2109
В данной статье будет рассмотрено несколько вариантов схем реализации идеи плавного включения и выключения светодиодов подсветки панели приборов, салонного света, а в некоторых случаях и более мощных потребителей – габаритов, ближнего света и им подобных. Если у вас панель приборов подсвечивается с помощью светодиодов, при включении габаритов подсветка приборов и кнопок на панели будет зажигаться плавно, что выглядит достаточно эффектно. То же можно сказать и про освещение салона, которое будет плавно загораться, и плавно же затухать после закрытия дверей автомобиля. В общем, неплохой такой вариант тюнинга подсветки :).
Схема управления плавным включением и выключением нагрузки, управляемая плюсом.
Данную схему можно использовать для плавного включения светодиодной подсветки приборной панели автомобиля.
Эту схему можно использовать и для плавного розжига стандартных ламп накаливания со спиралями небольшой мощности. При этом транзистор необходимо разместить на радиаторе с площадью рассеивания около 50 кв. см.
Схема работает следующим образом. Управляющий сигнал поступает через диоды 1N4148 при подаче напряжения на «плюс» при включении габаритных огней и зажигания. При включении любого из них подается ток через резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 120 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен. При необходимости, изменить время розжига и затухания управляемого элемента (светодиоды или лампы) можно подбором номиналов сопротивлений и емкости конденсатора 220 мкФ.
При правильной сборке и исправных деталях этой схеме не нужны дополнительные настройки.
Вот вариант печатной платы для размещения деталей данной схемы:
Схема плавного включения и выключения светодиодов.
Данная схема позволяет плавно включать – выключать светодиоды, а также уменьшать яркость подсветки при включении габаритов. Последняя функция может быть полезна в случае чрезмерно яркой подсветки, когда в темноте подсветка приборов начинает слепить и отвлекать водителя.
В схеме используется транзистор KT827. Переменное сопротивление R2 служит для установки яркости свечения подсветки в режиме включенных габаритов. Подбором емкости конденсатора можно регулировать время загорания и угасания светодиодов.
Для того что бы реализовать функцию притухания подсветки при включении габаритов, нужно установить сдвоенный выключатель габаритов или использовать реле, которое бы срабатывало при включении габаритов и замыкало контакты выключателя.
Плавное выключение светодиодов.
Простейшая схема для плавного затухания светодиода VD1. Хорошо подойдет для реализации функции плавного угасания салонного света после закрытия дверей.
Диод VD2 подойдет почти любой, ток через него невелик. Полярность диода определяется в соответствии с рисунком.
Конденсатор C1 электролитический, большой емкости, емкость подбираем индивидуально. Чем больше емкость, тем дольше горит светодиод после отключения питания, но не стоит устанавливать конденсатор слишком большой емкости, так как будут обгорать контакты концевиков из-за большой величины зарядного тока конденсатора. К тому же, чем больше емкость — тем массивнее сам конденсатор, могут возникнуть проблемы с его размещением. Рекомендуемая емкость 2200 мкФ. При такой емкости подсветка затухает в течение 3-6 секунд. Конденсатор должен быть рассчитан на напряжение не менее 25В. ВАЖНО! При установке конденсатора соблюдайте полярность! При неправильной полярности подключения электролитический конденсатор может взорваться!
- Автор: Роман
- Распечатать
- 5
- 4
- 3
- 2
- 1
(0 голосов, среднее: 0 из 5)
Поделитесь с друзьями!
Установка светодиодов в габариты. За и против