Генератов высоковольтных импульсов

Радиолюбитель

Последние комментарии

  • Roman на Высококачественный усилитель для наушников на микросхеме TDA2003
  • Сергей на КВ и УКВ: любительская радиосвязь
  • Сергей на Преобразователь напряжения 12 – 220 вольт
  • АЛЕКСАНДР на Закон Ома
  • Евгений на Программа “Компьютер – осциллограф”

Радиодетали – почтой

Применение высоковольтного импульсного генератора

Автор: ПЕНТКО Аркадий Альбертович
Город: Нижний Новгород

Применение высоковольтного импульсного генератора

Самостоятельное изготовление высоковольтного импульсного генератора и его применение в быту и медицине

Хочу поделиться опытом конструирования и использования импульсных генераторов высокого напряжения.

На рис.1 приведена схема генератора импульсов ВН частотой 25 Гц для получения приличной искры чтобы, например, поджигать газ. Собственно для этого он и был собран – для длительной работы бобины зажигания на запальнике горелки в газовой котельной. Бобины по паспорту не должны работать более 1минуты иначе они перегревались и выходили из строя, а операторы зачастую забывали их выключать. Данная схема работала сутками, практически не нагреваясь. Вместо бобины зажигания можно использовать строчный трансформатор от старого цветного телевизора, которые ещё встречаются в сараях и на помойках. Если-же повезёт, то можно найти и старый ламповый чб телевизор с целой высоковольтной обмоткой. В этом случае необходимо удалить первичную обмотку и прямо на феррит намотать виток к витку провод в виниловой изоляции ( например марки ПВ ) сечением 1,5 кв.мм. Убирается где-то витков 15.

Теперь о деталях. Конденсаторы лучше использовать керамические (бумажные шумят, а вернее щёлкают во время разряда) VD4-5 c обратным напряжением более 600 в. VD2 импульсный, КД226 например, из того же цв.TV из блока питания или строчной развёртки. Тиристор тоже любой: КУ-202 или импортный какой нибудь. А вот о VD1 следует поговорить отдельно. Диод тут включается как стабилитрон с высоким напряжением стабилизации. Собрав схему по рис.4 можно подобрать нужный диод. Я использовал 2Д202А с разбросом Uстаб от 360 до 450 в. С1 и С2 от 10 мкф для ограничительного резистора 620 кОм, до 100 мкф – для резистора 62 кОм. От этого резистора зависит ток через испытуемую деталь, а от ёмкости конденсаторов величина пульсаций выпрямленного напряжения. Применяя рекомендованные величины имеем пульсацию около 2 вольт при выходном напряжении 620 вольт и токах 1 мА (при 620 кОм) и 10 мА (при 62 кОм). При желании можно воспользоваться, автотрансформатором или, на худой конец, потенциометром (рис.5).

И наконец, рассмотрим схему на рис.3 и прилагаемое фото, на которых представлен прибор для лечения всяческих кожных болячек т.н. “Ультратон” – как его называют в продаже или Д”Арсонваль – как его именуют в кабинетах физиотерапии.

Естественно схема мной доработана и прошла апробацию у двух врачей, моих знакомых. Естественно в своей практике они не имеют права использовать этот прибор, т.к. он не сертифицирован, но в домашних условиях с удовольствием применяют и благодарят. Способы применения и показания к применению я описывать не собираюсь, т.к. не рекламный агент. Заинтересованные сами найдут, а я расскажу немного о деталях. Высоковольтный конденсатор – самая дефицитная деталь и кроме как в старых чб телевизорах его разве что на барахолке можно отыскать. Трансформатор тоже желательно использовать “с оттэдова” переделав его как было описано выше (правда при этом крайне желательно посмотреть на осциллографе вид выходных импульсов. Первый, самый начальный из затухающей синусоиды должен быть отрицательной полярности), а если использовать ТВС от цв. TV от 3УСЦТ и выше, то номера выводов на рис.3 обозначены. Высоковольтный провод я использовал от неоновой рекламы, хотя можно использовать и коаксиальный кабель старого типа РК… со снятым экраном-оплёткой. Правда в этом случае провод будет несколько жестковатым. В качестве лечебного электрода хорошо использовать неоновые цифро-знаковые индикаторы (ИН-1 и др.) желательно с фронтальным а не боковым (типа ИН-14) обзором . Все выводы у неонки соединяем вместе , припаиваем к высоковольтному проводу и обильно изолируем термоклеем из клеящего пистолета т.к. совершенно недопустимо “протекание” тока непосредственно от высоковольтного провода к телу ,только через стекло неоновой лампы! Напоследок о стабилитронах, обеспечивающих разный режим работы и , стало-быть интенсивность воздействия аппарата. Я ставил первый прибор с Uст.-120…140в, а затем десять КС515А , которые переключал SA-1 так, что с каждым щелчком прибавлялось по 15в.

В заключении скажу, что если бы не такой прибор то валяться бы мне в больнице в чужом городе когда в командировке у меня в руках коротнули 3 фазы и были обожжены руки (аж с металлизацией) и половина лица. А так удалось избежать нагноения и через 10 дней я уже был в строю, хотя и не с полной нагрузкой.

Удачи в экспериментах , но не забывайте , что кроме устройства с рис.3 остальные не имеют гальванической развязки от сети!! Соблюдайте осторожность!

Высоковольтные генераторы с индуктивными накопителями энергии

Все рассмотренные выше генераторы высокого напряжения имели в качестве накопителя энергии конденсатор. Не меньший интерес представляют устройства, использующие в качестве та­кого элемента индуктивности.

В подавляющем большинстве конструкции подобного рода преобразователей ранних лет содержали механический коммута­тор индуктивности. Недостатки такого схемного решения очевид­ны: это повышенный износ контактных пар, необходимость их периодической чистки и регулировки, высокий уровень помех.

С появлением современных бьютродействующих электрон­ных коммутаторов конструкции преобразователей напряжения с коммутируемым индуктивным накопителем энергии заметно уп­ростились и стали конкурентоспособными.

Основой одного из наиболее простых вьюоковольтных ге­нераторов (рис. 12.1) является индуктивный накопитель энер­гии [12.1].

Рис. 12.1. Электрическая схема высоковольтного генератора на основе индуктивного накопителя энергии

Этот транзистор в соответствии с длительностью и частотой следования управляющих импульсов коммутирует первичную об­мотку трансформатора Т1.

Рис. 12.2. Схема генератора высокого напряжения на основе ин­дуктивного накопителя энергии

Генератор вьюокого напряжения (рис. 12.2) может быть ис­пользован как самостоятельно — для получения вьюокого напря­жения (обычно до 1…2 кВ), либо как промежуточная ступень «накачки» других преобразователей.

Транзисторы BD139 можно заменить на КТ943В.

В качестве ключевых элементов преобразователей с ин­дуктивным накопителем энергии долгие годы использовали мощные биполярные транзисторы. Их недостатки очевидны: до­вольно высоки остаточные напряжения на открытом ключе, как следствие, потери энергии, перегрев транзисторов.

По мере совершенствования полевых транзисторов послед­ние начали оттеснять биполярнью транзисторы в схемах источни­ков питания, преобразователях напряжения.

Для современных мощных полевых транзисторов сопротив­ление открытого ключа может достигать десятью…сотью доли Ома, а рабочее напряжение достигать 1 …2 кВ.

На рис. 12.3 приведена электрическая схема преобразова­теля напряжения, выходной каскад которого выполнен на полевом транзисторе MOSFET. Для согласования генератора с полевым транзистором включен биполярный транзистор с большим коэф­фициентом передачи.

Электрическая схема генератора высоковольтных им­пульсов с ключевым полевым транзистором

Задающий генератор собран на /СМО/7-микросхеме CD4049 по типовой схеме. Как сами выходные каскады, так и каскады формирования управляющих сигналов, показанные на рис. 12.1 — 12.3 и далее, взаимозаменяемы и могут быть использованы в лю­бом сочетании.

Выходной каскад генератора вьюокого напряжения системы электронного зажигания конструкции П. Брянцева (рис. 12.4) вы­полнен на современной отечественной элементной базе [12.2].

При подаче на вход схемы управляющих импульсов транзи­сторы VT1 и VT2 кратковременно открываются. В результате ка­тушка индуктивности кратковременно подключается к источнику

Рис. 12.4. Схема выходного каскада генератора высокого напря­жения П. Брянцева на составном транзисторе

Рис. 12.5. Электрическая схема генератора высокого напряжения с задающим генератором на основе триггеров Шмитта

питания. Конденсатор С2 сглаживает пик импульса напряжения. Резистивный делитель (R3 и R5) ограничивает и стабилизирует максимальное напряжение на коллекторе транзистора VT2.

В качестве трансформатора Т1 использована катушка зажи­гания Б115. Ее основные параметры: Ri=1,6 Ом, 200 кГц.

Читайте также:  Светящиеся светодиодные трубки своими руками

Первичная обмотка трансформатора Т1, намотанная на сердечнике от трансформатора строчной развертки, имеет 40 витков диаметром 1,0 мм. Выходное напряжение преобразовате­ля на частотах ниже 5 кГц составляет 20 кВ, в области частот 50…70 кГц выходное напряжение снижается до 5… 10 /св.

Выходная мощность высокочастотного сигнала устройства может доходить до 30 Вт. В этой связи при использовании данной конструкции, например, для газоразрядной фотосъемки необхо­димо принять особые меры по ограничению выходного тока.

Вьюоковольтный генератор, рис. 12.6 [12.4], имеет более сложную конструкцию.

Предоконечный каскад на комплиментарных транзисторах VT1 и VT2 обеспечивает работу оконечного — на мощном транзи­сторе VT3.

Соотношение длительность/пауза регулируют потенциомет­ром R7, а частоту импульсов — потенциометром R4.

Частоту генерации можно изменять ступенчато — переклю­чением емкости конденсатора С1. Начальная частота генерации близка к 20 кГц.

Первичная обмотка доработанного трансформатора строч­ной развертки имеет 5… 10 витков, ее индуктивность примерно 0,5 мГн. Защита выходного транзистора от перенапряжения осуществляется включением варистора R9 параллельно этой обмотке.

Транзистор 2N2222 можно заменить на КТ3117А, КТ645; 2N3055 — на КТ819ГМ; BD135 — на КТ943А, BD136 — на КТ626А, диоды 1N4148 — на КД521, КД503 и др. Микросхему DA2 можно заменить отечественным аналогом — КР142ЕН8Б<Д); DDI — К561ТЛ1.

Следующим видом генераторов вьюоковольтного напряже­ния являются автогенераторнью преобразователи напряжения с индуктивной обратной связью.

Импульсный преобразователь с самовозбуждением выра­батывает пакеты высокочастотных высоковольтных колебаний (рис. 12.7) [12.5].

Рис. 12.7. Электрическая схема импульсного преобразователя напряжения с самовозбуждением

Автогенератор импульсов высокого напряжения на транзи­сторе VT1 получает*сигнал обратной связи с трансформатора Т1 и в качестве нагрузки имеет катушку зажигания Т2. Частота гене­рации — около 150 Гц. Конденсаторы С*, С2 и резистор R4 опре­деляют режим работы генератора.

Трансформатор Т1 выполнен на магнитопроводе Ш 14×18. Обмотка I состоит из 18 витков провода ПЭВ-2 0,85 мм, намотан­ных в два провода, а II — из 72 витков провода ПЭЛШО 0,3 мм.

Стабилитрон VD2 укреплен в центре дюралюминиевого ра­диатора размерами 40x40x4 мм. Этот стабилитрон можно заме­нить цепочкой мощных стабилитронов с суммарным напряжением стабилизации 150 В. Транзистор VT1 также установлен на радиа­торе размерами 50x50x4 мм.

Резонансный преобразователь напряжения с самовозбуж­дением описан в работе Е. В. Крылова (рис. 12.8). Он выполнен на высокочастотном мощном транзисторе VT1 типа КТ909А [12.6].

Трансформатор преобразователя выполнен на фторопла­стовом каркасе диаметром 12 мм с использованием ферритового стержня 150ВЧ размером 10×120 мм. Катушка L1 содержит 50 витков, L2 — 35 витков провода ЛЭШО 7×0,07 мм. Катушки низко­вольтной половины устройства имеют по одному витку провода во

Рис. 12.8. Схема резонансного высоковольтного генератора с трансформаторной обратной связью

фторопластовой (политетрафторэтиленовой) изоляции. Они на­мотаны поверх катушки L2.

Выходное напряжение преобразователя составляет 1,5 кВ (максимальное — 2,5 кВ). Частота преобразования — 2,5 МГц. Потребляемая мощность — 5 Вт. Выходное напряжение устройст­ва изменяется от 50 до 100% при увеличении напряжения питания с 8 до 24 В.

Конденсатором переменной емкости 04 трансформатор настраивают на резонансную частоту. Резистором R2 устанавли­вают рабочую точку транзистора, регулируют уровень положи­тельной обратной связи и форму генерируемых сигналов.

Преобразователь безопасен в работе — при низкоомной на­грузке вьюокочастотная генерация срывается.

Следующая схема вьюоковольтного источника импульсно­го напряжения с двухкаскадным преобразованием показана на рис. 12.9 [12.7]. Электрическая схема его первого каскада доста­точно традиционна и практически не отличается от рассмотрен­ных ранее конструкций.

Отличие устройства (рис. 12.9) заключается в использова­нии второго каскада повышения напряжения на трансформаторе. Это заметно повышает надежность устройства, упрощает конст­рукцию трансформаторов и обеспечивает эффективную изоля­цию между входом и выходом устройства.

Трансформатор Т1 выполнен на Ш-образном сердечнике из трансформаторной стали. Сечение сердечника составляет

Рис. 12.9. Схема высоковольтного преобразователя с трансфор­маторной обратной связью и двойным трансформатор­ным преобразованием напряжения

16×16 мм. Коллекторные обмотки I имеют 2×60 витков провода диаметром 1,0 мм.

Катушки обратной связи II содержат 2×14 витков провода диаметром 0,7 мм. Повышающая обмотка III трансформатора Т1, намотанная через несколько слоев межслойной изоляции, имеет 20… 130 витков провода диаметром 1,0 мм. В качестве выходного (вьюоковольтного) трансформатора использована катушка зажи­гания автомобиля на 12 или 6 В.

К генераторам вьюокого напряжения с индуктивными нако­пителями энергии следует отнести и устройства, рассмотреннью ниже.

Для получения вьюоковольтных наносекундных импульсов В. С. Белкиным и Г. И. Шульженко [12.8, 12.9] была разработана схема формирователя на дрейфовых диодах и насыщающейся индуктивностью с однотактным преобразователем, синхронизи­рованным с формирователем, а также показана возможность со­вмещения функций ключа формирователя и преобразователя.

Схема преобразователя, синхронизированного с формиро­вателем, приведена на рис. 12.10; вариант схемы формирователя с раздельными ключевыми элементами приведен на рис. 12.11, а временные диаграммы, характеризующие работу отдельных уз­лов схемы формирователя, — на рис. 12.12.

Задающий генератор прямоугольных импульсов (рис. 12.10) вырабатывает импульсы, отпирающие транзисторный ключ VT1

Рис. 12.10. Схема формирователя высоковольтных импульсов с общим ключом для преобразователя и формирователя

Рис. 12.11. Фрагмент схемы формирователя высоковольтных им­пульсов с раздельными ключами

Рис. 12.12. Временная диаграмма работы преобразователя

на время 1н и запирающие на время ^ (рис. 12.12). Их сумма опре­деляет период повторения импульсов. За время через дроссель L1 протекает ток I„. После запирания транзистора ток через диод VD1 заряжает накопительную емкость формирователя С1 до напряжения и^, диод VD1 закрывается и отсекает конденсатор С1 от источника питания.

В таблице 12.1 приведены данные по возможному исполь­зованию полупроводниковых приборов в формирователе вы­соковольтных импульсов. Амплитуда формируемых импульсов приведена для низкоомной нагрузки величиной 50 Ом.

Таблица 12.1. Выбор элементов для формирователей высоковольтных импульсов

Мой высоковольтный генератор

Информация предоставлена исключительно в образовательных целях!
Администратор сайта не несет ответственности за возможные последствия использования предоставленной информации.


Мой генератор высокого напряжения (HV) я использую во многих своих проектах (генератор Маркса, биполярная катушка Тесла, взрывающиеся проволочки):

Элементы –
1 – выключатель
2 – варистор
3 – конденсатор подавления э/м помех
4 – трансформатор понижающий от ИБП
5 – выпрямитель (диоды Шоттки) на радиаторе
6 – конденсаторы сглаживающего фильтра
7 – стабилизатор напряжения 10 В
8 – генератор прямоугольных импульсов с регулируемой переменным резистором скважностью
9 – драйвер MOSFET-ов
10 – включенные параллельно MOSFET-ы IRF540, закрепленные на радиаторе
11 – высоковольтная катушка на ферритовом сердечнике из монитора
12 – высоковольтный выход
13 – электрическая дуга

Схема источника – довольно стандартная, основана на схеме “флайбэк”-преобразователя (flyback converter):

Входные цепи

Варистор S10K275 служит для защиты от перенапряжения:

S – дисковый варистор
10 – диаметр диска 10 мм
K – погрешность 10%
275 – макс. напряжение переменного тока 275 В

Конденсатор C снижает помехи, создаваемые генератором в сети электроснабжения. В качестве него использован помехоподавляющий конденсатор X типа.

Источник постоянного напряжения

Трансформатор – из источника бесперебойного питания:

Первичная обмотка трансформатора Tr подключена к сетевому напряжению 220 В, а вторичная – к мостовому выпрямителю VD1.


Действующее значение напряжения на выходе вторичной обмотки составляет 16 В.

Выпрямитель собран из трех корпусов сдвоенных диодов Шоттки, закрепленных на радиаторе – SBL2040CT, SBL1040CT:

SBL2040CT – макс. средний выпрямленный ток 20 А, макс. пиковое обратное напряжение 40 В, макс. действующее обратное напряжение 28 В
соединены параллельно:
SBL1040CT – макс. средний выпрямленный ток 10 А, макс. пиковое обратное напряжение 40 В, макс. действующее обратное напряжение 28 В
SBL1640 – макс. средний выпрямленный ток 16 А, макс. пиковое обратное напряжение 40 В, макс. действующее обратное напряжение 28 В

Читайте также:  Самодельный паяльный карандаш

Пульсирующее напряжение на выходе выпрямителя сглаживается фильтрующими конденсаторами: электролитическими CapXon C1, C2 емкостью 10000 мкФ на напряжение 50 В и керамическим C3 емкостью 150 нФ. Затем постоянное напряжение (20,5 В) поступает на ключевой MOSFET и на стабилизатор напряжения, на выходе которого действует напряжение 10 В, служащее для питания генератора импульсов.

Стабилизатор напряжения собран на микросхеме IL317:

Дроссель L и конденсатор C служат для сглаживания пульсаций напряжения.
Светодиод VD3, включенный через балластный резистор R4, служит для индикации наличия напряжения на выходе.
Переменный резистор R2 служит для подстройки уровня выходного напряжения (10 В).

Генератор импульсов

Генератор собран на таймере NE555 и вырабытывает прямоугольные импульсы. Особенностью этого генератора является возможность менять скважность импульсов с помощью переменного резистора R3, не меняя их частоты. От скважности импульсов, т.е. от соотношения между длительностью включенного и выключенного состояния ключа зависит уровень напряжения на вторичной обмотке трансформатора.

Ra = R1 + верхняя часть R3
Rb = нижняя часть R3 + R2
длительность “1” $T1 = 0,67 cdot Ra cdot C$
длительность “0” $T2 = 0,67 cdot Rb cdot C$
период $T = T1 + T2$
частота $f = <1,49 over <(Ra + Rb)>cdot C>$

При перемещении движка переменного резистора R3 суммарное сопротивление Ra + Rb = R1 + R2 + R3 не изменяется, поэтому не меняется и частота следования импульсов, а меняется только соотношение между Ra и Rb, и, следовательно, меняется скважность импульсов.

Ключ и высоковольтный трансформатор
Импульсы от генератора управляют через драйвер ключем на двух включенных параллельно MOSFET-ах (MOSFETmetal-oxide-semiconductor field effect transistor, МОП-транзистор (“металл-оксид-полупроводник”), МДП-транзистор (“металл-диэлектрик-полупроводник”), полевой транзистор с изолированным затвором) IRF540N в корпусе TO-220, закрепленных на массивном радиаторе:

G – затвор
D – сток
S – исток
Для транзистора IRF540N максимальное напряжение “сток-исток” составляет VDS = 100 вольт, а максимальный ток стока ID = 33/110 ампер. У этого транзистора малое сопротивление в открытом состоянии RDS(on) = 44 миллиома. Напряжение открывания транзистора составляет VGS(th) = 4 вольта. Рабочая температура – до 175°C.
Можно использовать и транзисторы IRFP250N в корпусе TO-247.

Драйвер нужен для более надежного управления MOSFET-транзисторами. В простейшем случае он может быть собран из двух транзисторов (n-p-n и p-n-p):

Резистор R1 ограничивает ток затвора при включении MOSFET-а, а диод VD1 создает путь для разряда затворной емкости при выключении.

MOSFET замыкает/размыкает цепь первичной обмотки высоковольтного трансформатора, в качестве которого использован трансформатор строчной развертки (“строчник”, flyback transformer (FBT)) из старого монитора Samsung SyncMaster 3Ne:

На принципиальной схеме монитора показан высоковольтный вывод HV строчного трансформатора T402 (FCO-14AG-42), подключаемый к аноду кинескопа CRT1:

Из трансформатора я использовал только сердечник, так как в строчный трансформатор встроены диоды, которые залиты смолой и не подлежат удалению.
Сердечник такого трансформатора изготовлен из феррита и состоит из двух половинок:

Для предотвращения насыщения в сердечнике с помощью пластиковой прокладки (spacer) делается воздушный зазор.
Вторичную обмотку я намотал большим числом (

500) витков тонкого провода (сопротивление

34 Ом), а первичную – толстым проводом с малым числом витков.

Резкие перепады тока в первичной обмотке трансформатора при выключении MOSFET-а индуцируют высоковольтные импульсы во вторичной обмотке. На это расходуется энергия магнитного поля, накопленная при возрастании тока в первичной обмотке. Выводы вторичной обмотки могут быть либо подключены к электродам для получения, например, электрической дуги, либо подключены к выпрямителю для получения высокого постоянного напряжения.

Диод VD1 и резистор R (снабберная (snubber) цепочка) ограничивают импульс напряжения самоиндукции на первичной обмотке трансформатора при размыкании ключа.

Моделирование генератора высокого напряжения
Результаты моделирования процессов в генераторе высокого напряжения в программе LTspice представлены ниже:

На первом графике видно, как нарастает ток в первичной обмотке по экспоненциальному закону (1-2), затем резко обрывается в момент размыкания ключа (2).
Напряжение на вторичной обмотке немного реагирует на плавное возрастание тока в первичной обмотке (1), но резко возрастает при обрыве тока (2). На интервале (2-3) ток в первичной обмотке отсутствует (ключ выключен), а затем опять начинает возрастать (3).

Мощный лабораторный генератор импульсов


Схема 1

Генератор был спроектирован для использования в нем минимального количества общедоступных электронных компонентов, с хорошей повторяемостью и достаточной надежностью. Вариант генератора (схема 1) собран на базе широко распространенного шим-контроллера UC3525 (U1), который управляет мостовой схемой на полевых транзисторах Q4-Q7. Если нижние ключи каждого из полумостов, работающих в противофазе, управляются непосредственно выходами микросхемы 11/14 U2, то в качестве драйверов верхнего плеча применены бустрепные каскады на транзисторах Q2, Q3. Такие каскады широко используются в большинстве современных микросхемных драйверов и достаточно хорошо описаны в литературе, посвященной силовой электронике. Входное напряжение переменное или постоянное (

220В/30-320В), подающееся на вход диодного моста (или минуя его в случае подачи постоянного напряжения), питает силовую часть схемы. Для предотвращения большого стартового тока в разрыв цепи питания включен термистор Vr1 (5A/5Ohm). Управляющая часть схемы запитана может быть запитана от любого источника с выходным напряжением +15/+25В и током от 0,5А. Параметрический стабилизатор напряжения на транзисторе Q1 может иметь выходное напряжение от +9 до +18В (в зависимости от типа применяемых силовых ключей, например), но в ряде случаев можно обойтись и без этого стабилизатора, если внешний источник питания с необходимыми параметрами уже стабилизирован. Микросхема UC3525 была выбрана не случайно, – способность генерации импульсной последовательности от нескольких десятков герц до 500кГц и достаточно мощные выходы (0,5А). По крайней микросхемы TL494 не смогли функционировать при частоте менее 250Гц в двухтактном режиме (в однотактном – без проблем) – происходил сбой в работе внутренней логики и последовательность импульсов, а так же их длительность становились хаотичными.

Регулировка частоты импульсной последовательности производится переменным резистором R1, регулировка длительности импульсов осуществляется с помощью R4. Начальная длительность “мертвого времени” устанавливается резистором R3.


Схема 2

Генератор, показанный на схеме 2, является полным аналогом предыдущей схемы и практически не имеет схемных отличий. Однако, отечественная микросхема К1156ЕУ2 (полный аналог UC3825), примененная в этом генераторе, способна работать на более высоких частотах (практически до 1МГц), выходные каскады имеют большую нагрузочную способность (до 1,5А). Кроме того, она имеет несущественное различие в цоколевке по сравнению с UC3525. Так, “тактовый” конденсатор соединен с выводом 6 (5 – у микросхемы 3525), времязадающий резистор соединен с выводом 5 (6 – у микросхемы 3525). Если вывод 9 микросхемы UC3525 – это выход усилителя ошибки, то в микросхеме UC3825 этот вывод выполняет функции входа “токового” ограничителя. Впрочем, все подробности – в даташите на эти микросхемы. Стоит отметить, однако, что К1156ЕУ2 менее устойчива в работе частотах мене 200Гц и требует более тщательной компоновки и обязательной блокировки ее цепей питания конденсаторами относительно большой емкости. При игнорировании этих условий, может быть нарушена плавность регулировки длительности импульсов вблизи их временного максимума. Описанная особенность проявлялась, однако, лишь при сборке на макетной плате. После сборки генератора на печатной плате эта проблема не проявлялась.

Обе схемы легко масштабируются по мощности путем применения либо более мощных транзисторов либо путем их параллельного включения (для каждого из ключей), а так же изменением напряжения питания силовых ключей. Все силовые компоненты желательно “посадить” на радиаторы. До мощности 100Вт использовались радиаторы с клейкой основой, предназначенные для установки на микросхемы памяти в видеокартах (выходные ключи и транзистор стабилизатора). В течении получаса работы с частотой 10кГц с максимальной длительностью выходных импульсов, при напряжении питания ключей (использовались транзисторы 31N20) +28В на нагрузку около 100Вт (две последовательно соединенные лампы 12В/50Вт), температура силовых ключей не превышала 35 градусов Цельсия.

Читайте также:  Антигравитрон (левитрон)

Для построения приведенных выше схем использовались готовые схемные решения, мною лишь перепроверенные и дополненные при макетировании. Для схем генераторов были разработаны и изготовлены печатные платы. На рис 1 и рис 2 изображены платы первого варианта схемы генератора, на рис 3, рис 4 – изображения платы для второй схемы.

Обе схемы на момент написания статьи проверялись в работе на частотах от 40Гц до 200кГц с различными активными и индуктивными нагрузками (до 100Вт), при постоянных входных напряжениях питания от 23 до 100В, с выходными транзисторами IRFZ46, IRF1407, IRF3710, IRF540, IRF4427, 31N20, IRF3205. Вместо биполярных транзисторов Q2, Q3 рекомендуется установка (особенно для работы на частотах свыше 1кГц) полевых транзисторов, таких как IRF630, IRF720 и подобных с током от 2А и рабочим напряжением от 350В. В этом случае номинал резистора R7 может варьироваться от 47Ом (свыше 500Гц) до 1к.

Номиналы компонентов указанные через слэш – для частот свыше 1кГц/для частот до 1кГц кроме резисторов R10, R11, не указанных в принципиальной схеме, но для которых есть установочные места на платах, – вместо этих резисторов можно установить перемычки.

Генераторы не требуют настройки и при безошибочном монтаже и исправных компонентах начинают работать сразу после подачи питания на схему управления и выходные транзисторы. Требуемый диапазон частот определяется емкостью конденсатора С1. Номиналы компонентов и позиции для обеих схем – одинаковые.

Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно

Всем здравствуйте! В сети множество схем высоковольтных генераторов отличающихся по мощности, по сложности сборки, по цене и доступности компонентов. Данная самоделка собрана из практически бросовых деталей, собрать ее сможет любой желающий. Собирался этот генератор, скажем так, для ознакомительных целей и всевозможных опытов с электричеством высокого напряжения. Примерный максимум этого генератора 20 киловольт. Так как в качестве источника питания для этого генератора не используется сетевое напряжение это дополнительный плюс с точки зрения безопасности.

Кому интересно попробую рассказать подробнее. В качестве генератора импульсов используется кулер охлаждения от компьютера или аналогичный на 12 вольт, но с одним условием – в нем должен быть встроенный датчик холла. Именно датчик холла и будет генерировать импульсы для высоковольтного трансформатора, в качестве которого, в данном случае, используется катушка зажигания от автомобиля. Выбрать подходящий вентилятор очень просто, как правило, он имеет три ввода.

На фото видно наличие трех выводов. Стандартная расцветка это красный вывод плюс питания, черный – общий (земля) и желтый – выход с датчика холла. При подаче питания на вентилятор на выходе (желтый провод) получаем импульсы, частота которых зависит от оборотов электромотора данного кулера и чем выше напряжение, тем выше частота импульсов. Повышать напряжение следует в разумных пределах – примерно 12-15 вольт, чтоб не спалить кулер и всю схему. Получаемый импульсный сигнал предстоит подать на катушку зажигания, но его необходимо усилить.

В качестве силового ключа использовал «N» канальный полевой транзистор (мосфет) IRFS640A подойдут и другие с аналогичными параметрами, или примерные на ток 5-10 ампер и напряжение вольт 50 для надежности. Мосфеты присутствуют практически во всех современных электронных схемах, будь то материнская плата компьютера или пусковая схема энергосберегающей лампы, а значит, найти подходящий не возникнет проблем.

Катушка зажигания от автомобилей ВАЗ «классика» Б117-А имеет три вывода. Центральный это высоковольтный выход, «Б+» это плюсовой 12 вольт, и общий «К» – возможно не маркируется.

Изначально схем состояла из трех компонентов: кулер, мосфет и катушка, но через непродолжительное время работы ломалась, так как выходили из строя либо мосфет, либо датчик холла. Выход – установка резисторов на 100 Ом для ограничения пускового тока с датчика холла на затвор, и подтягивающий резистор 10кОм для запирания мосфета при отсутствии импульса.

При сборке схемы транзистор следует устанавливать на радиатор желательно с применением термопасты, так как нагрев при работе существенный.

Разъем от кулера использовал в качестве клеммной колодки для подключения мосфета. В результате необходимость в пайке транзистора отпала, для подключения или замены достаточно соединить колодку с выводами транзистора.

Вентилятор закрепил сверху радиатора при помощи двух саморезов. В результате получилось, что кулер играет двойную роль – как генератор импульсов и как дополнительное охлаждение.

Подключаем питание 12-14 вольт от аккумулятора и пробуем в работе.

Для молний по дереву данный агрегат конечно слабоват, но что такое высокое напряжение с данной самоделкой – оценить можно.


Генератор высокого напряжения из строчника на транзисторе

Здравствуйте, уважаемые друзья! Сегодня я предлагаю вам собрать генератор высокого напряжения всего на одном транзисторе из строчного трансформатора ТВС-110ПЦ15 с умножителем напряжения УН9/57-13 от старого цветного телевизора. Схема довольно простая, построена по принципу блокинг генератора и содержит небольшое количество деталей.

Схема генератора высокого напряжения из строчника на одном транзисторе

Для сборки генератора вам понадобится один транзистор КТ819Г, или импортный аналог TIP41C, но лучше всего использовать MJE13009, поскольку этот транзистор выдерживает ток до 12 А и соответственно будет меньше греться. Лично я в своем генераторе использовал MJE13009. Транзистор обязательно намажьте термопастой и установите на радиатор, желательно с вентилятором.

Еще вам понадобится два резистора мощностью по 5 ватт. На 100 ом и 240 ом, в моем генераторе резисторы очень сильно грелись и я решил приклеить «поксиполом» небольшой радиатор. Самой важной деталью генератора является строчный трансформатор ТВС-110ПЦ15, возможно использовать ТВС-90ЛЦ5 и другие аналогичные от старых цветных, черно белых и даже ламповых телевизоров.

Строчный трансформатор ТВС-110ПЦ15

На магнитопроводе трансформатора надо намотать пару дополнительных обмоток. Катушка L1 содержит 10 витков, намотанных проводом диаметром 1 миллиметр. Катушку L2 мотаем проводом 1,5 миллиметра, всего 4 витка. Обе катушки должны быть намотаны в одну сторону. Вторичная высоковольтная обмотка остается без изменения.

Строчный трансформатор ТВС-110ПЦ15 с двумя дополнительными обмотками

Умножитель напряжения УН9/27-13 или аналогичный тоже нуждается в незначительной доработке. На нем надо удалить два неиспользуемых вывода, отмеченных на картинке красными стрелками, потом изолировать эти места «поксиполом». Делать это необязательно, но если вы случайно во время эксперимента коснетесь этих выводов… Волосы встанут дыбом и мало не покажется, конечно током не убьет, там очень мало ампер, но обжечь может. Между строчным трансформатором и умножителем устанавливается резистор на 470 ом.

Умножитель напряжения УН9/27-13

Разрядник сделан из двух проволок диаметром 1 миллиметр. Расстояние между электродами подбирается индивидуально. Для питания генератора лучше всего использовать источник питания от 12 до 30 вольт с силой тока не менее 2А.

Генератор высокого напряжения. Разрядник

После подачи питания на разряднике появляется мощная дуга. Как измерить напряжение на выходе из умножителя без киловольт метра? Принято считать, 1 миллиметр дуги за 1 киловольт, длина дуги 15 миллиметров, значит напряжение на разряднике примерно 15 киловольт.

Хочу сказать пару слов о технике безопасности. На разрядник из умножителя подается высокое напряжение несколько десятков киловольт, поэтому не прикасайтесь руками к разряднику во избежание поражения электрическим током, даже после отключения питания в конденсаторах умножителя остается высокое напряжение. Конечно током не убьет, потому что мало ампер, но ударит больно и возможно оставит ожоги на коже.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как работает генератор высокого напряжения.

Ссылка на основную публикацию