Использование мощных светодиодов

Характеристики, производители и топ лучших мощных светодиодов

Led-светильники применяются сегодня повсеместно – от незначительной по яркости подсветки в цифровых приборах до сверхярких прожекторов и фонарей уличного освещения. Мощные светодиоды попадают в отдельную категорию осветительных устройств и отличаются рядом технических характеристик от аналогов меньшей силы. Рассмотрим, какие производители выпускают лед-элементы такого типа, каковы их основные параметры, область применения, а также наиболее популярные модели из них, имеющиеся в продаже.

Кто производит самые мощные и яркие led

Далеко не все производители светодиодов выпускают самые яркие и мощные лед-светильники. Среди компаний, обретших наибольшую популярность в этом сегменте, можно выделить следующие:

  1. Cree. Совместное японо-американское производство мощных лед-светильников. Компания начала работу в 1987 году и сегодня занимает лидирующую позицию среди прочих линеек по выпуску сверхмощных светодиодов. Примечательно, что разработчик изготавливает не просто мощные, а энергоэффективные модели led-источников. Например, уже в 2012 году были созданы образцы с предельными светотехническими показателями, превзошедшими даже теоретические расчеты – 250 лм на один ватт. При этом светодиодные лампы изготавливаются в двух категориях – повышенной яркости High-Brightness и более мощные XLamp. Производитель заверяет, что его лед-светильники работают до 100 тыс. часов.
  2. Lumileds. Компания возникла в качестве отделения американской промышленной группы Hewlett-Packard. В 1999 году начались первые разработки в сфере выпуска мощных светодиодов. Сегодня продукция фирмы известна по всему миру под маркой LUXEON. Продукция выпускается в нескольких сериях – базовая Emitter, с радиатором типа «звезда» Star, повышенной светоотдачи K2 Emitter и новое поколение K2 Star. При максимальной яркости лед-элементы отличаются легкостью, миниатюрностью и незначительным выделением тепла, что позволяет применять их в области, где не допустим даже малый нагрев от источника света.
  3. Avago Technologies. Независимая калифорнийская компания, основанная в 1961 году. Занимается разработкой и производством оптоволоконных систем. Одно из направлений – выпуск ультраярких светодиодов в штатных корпусах. Примером является образец PLCC-4. Среди его главных характеристик выделяются – надежность, термостойкость, широкое цветовое разнообразие, 120-градусный угол излучения, срок службы при неизменных параметрах – до 50 тыс. часов. Применяется для внутренней и внешней подсветки, а также в автотехнике.
  4. OSRAM. Компания с вековым опытом производства ламп – преимущественно накаливания и энергосберегающих. С 2001 года начала выпуск светодиодов, в том числе самые мощные. Срок службы моделей Opto достигает 100 тыс. часов. Другим широко известным детищем массового изготовления фирмы является органические лед-кристаллы OLEDs. Среди прочих популярных серий выделяются – миниатюрный герметичный корпус DRAGON, четырех-шести-кристальные и недорогие OSTAR-Lighting.

Обратите внимание! Сегодня на рынке можно найти мощные светодиоды не только известных марок, но и фирм-однодневок. Это преимущественно китайские производители. Главное их свойство – существенно низкая цена, чем у оригиналов. Однако платой за это является несколько уменьшенная мощность и вдвое или втрое меньший срок службы.

Характеристики мощных светодиодов

Большую часть современных светодиодов принято считать очень яркими при мощности от 0,5 ватт. Однако существуют экземпляры силой и в 10 и 100 и даже 500 Вт (полукиловаттные лэд-лампы способны плавить лед с расстояния нескольких метров). При этом работают они от сети напряжением 12 вольт, хотя есть модели с низким номиналом от 5 вольт и ниже и, напротив, с большим – от 24 вольт и выше. Наиболее полную характеристику конкретного мощного лед-элемента дает обзор самых важных его параметров, среди которых можно выделить:

  1. Габариты. Нередко производитель отображает эту величину в «mil», что соответствует двум сотым миллиметра.
  2. Мощность, в ваттах.
  3. Номинальное напряжение, в вольтах.
  4. Светимость, в люменах.
  5. Ток, в миллиамперах.
  6. Материал. Хороший – медный (более теплопроводный), не очень – на базе алюминиевых сплавов (как правило, китайских производителей).
  7. Количество и качество проводников для подключения кристаллов. На фирменных используются до 4 золотых электродов, на плохих – не более 2 медных проводка.
  8. Температура цвета.
  9. Производитель.
  10. Стоимость.

Рекомендация! Матрицы мощных светодиодов состоят из набора одноваттных кристаллов, размер которых задан стандартными параметрами – 30 на 30 или 45 на 45 mil с значением номинального тока в 300 мА. Чтобы определить, какова будет действительная мощность лед-светильника, необходимо подсчитать количество этих чипов. На цветных и RGB-версиях их можно видеть невооруженным глазом под люминофором – они ничем не прикрыты. К примеру, если их количество будет равно 40, значит действительная сила источника будет равна 40 Вт.

ТОП самых ярких и мощных

Наиболее мощными на сегодня являются светодиоды серии XHP компании-производителя Cree. Светимость в 1000 лм достигается работой трех (или даже одного, функционирующего в пиковом режиме) полупроводниковых кристаллов. Для сравнения, предыдущий рекорд 2011 года при одинаковых светотехнических показателях с нынешним требовалось 4, а в 2008 году – все 9 кристаллов. Фактически при одинаковых с предшественниками габаритами новые экземпляры дают в два раза более мощный световой поток.

Среди наиболее мощных светодиодов других популярных производителей выделяются следующие модели:

  1. LE UW E3B компании OSRAM, 730 лм на 15 Вт.
  2. LUW W5AP серии Diamond DRAGON той же линейки, 260 лм.
  3. ASMT-QWB2-NEF0E от Avago Technologies.
  4. LXK2-PWC4-0200 линейки Lumileds, 200 лм.
  5. L2K2-MWC4-11-0200 производителя Lumileds, 200 лм.

Область применения

Использование мощных светодиодов особенно актуально в тех областях, где нужно создать яркое освещение или подсветку, не повышая при этом энергопотребление и не снижая рабочий ресурс самого светильника. Это прежде всего такие сферы, как:

  1. Подсветка улиц, дорог, магистралей.
  2. Освещение больших площадей различного назначения – культурно-массовых объектов, аэропортов, вокзалов, стадионов.
  3. Создание достаточной видимости в цехах в соответствии с нормативами на производстве.
  4. Декоративная иллюминация зданий, мостов, строений, садов.
  5. Обеспечение системы сигнальных фонарей, светофоров на транспорте, взлетно-посадочных полосах, морских портах.
  6. Проведение охранных, поисковых мероприятий с созданием максимально возможной засветки местности в темное время суток.
  7. Освещение частных территорий.
  8. Оптические системы транспортных средств передвижения.

Важно! Главное преимущество мощных светодиодов по сравнению с лампами накала и энергосберегающими аналогами состоит в большом сроке службы (до 100 тыс. часов) и экономии до 95%.

Основные выводы

Мощные светодиоды выпускают многие производители, но наиболее популярными и зарекомендовавшими себя в качестве надежных являются следующие:

  1. Cree.
  2. Lumileds.
  3. Avago Technologies.
  4. OSRAM.

Среди наиболее важных характеристик мощных светодиодов выделяются: габариты матрицы, мощность, номинальный ток и напряжение, светимость, материал радиатора, количество и материал проводников для подключения полупроводникового кристалла, цветовая температура, производитель и цена. Наиболее ярким являются лед-элементы серии XHP линейки Cree. Светимость одного кристалла может достигать рекордных 1000 лм. Применение светильников с такими светотехническими характеристиками достаточно широко – от уличных фонарей и светосигнальных устройств до транспортных оптических систем.

Перспективы применения мощных светодиодов Cree для освещения

Андрей Туркин (ПроСофт)

Практическое применение мощных светодиодов Cree включает освещение жилых и производственных помещений, архитектурную и ситуационную подсветку, а в последнее время – и уличное освещение. Статья рассказывает об особенностях применения светодиодов, в том числе – о решениях на основе светодиодов Cree для освещения московских улиц и зданий.
Области применения светодиодов за последние годы существенно расширились. Если до недавнего времени светодиоды ассоциировались в основном с индикацией в электронных приборах, то сейчас они уже успешно применяются, например, в транспорте (светофоры, дорожные знаки, индикация в салонах), а также в автомобильной промышленности, где весьма успешно прошло внедрение светодиодов в габаритные фонари и сигналы торможения. Прогресс в технологии разработки мощных светодиодов, произошедший на рубеже XX и XXI веков, позволил светодиодам попасть в сферу интересов светотехники, и можно предположить, что мощные светодиоды в скором времени вытеснят устаревшие источники света.

Развитие светодиодных технологий, результатом которого стало появление новых эффективных мощных светодиодов, в совокупности с растущей потребностью в энергосбережении, открывает новый рынок для светодиодных изделий в освещении. Примером применения светодиодных изделий может быть освещение коридоров и подъездов в домах, освещение технических зон и рабочих мест на предприятиях, освещение складов и хранилищ, и даже освещение витрин и прилавков в магазинах.

Мощные cветодиоды Cree

Светодиоды, предназначенные для применения в освещении, – это мощные светодиоды, которые по таким параметрам как световой поток (лм), световая отдача (лм/Вт), индекс цветопередачи и надежность не уступают, а зачастую и превосходят традиционные источники света, используемые в осветительных приборах. Среди их преимуществ по сравнению с лампами – направленное излучение, срок службы при работе в номинальном режиме не менее 50000 часов. Светодиоды не содержат ртути, как большинство люминесцентных и разрядных ламп, что существенно облегчает проблему утилизации. Кроме того, время достижения максимального значения светового потока после включения светодиода составляет наносекунды, а максимальная световая отдача достигается в диапазоне холодного белого цвета.

Первыми изделиями, где нашли применение мощные светодиоды, стали фонарики и аварийные светильники. Основным препятствием для более широкого применения светодиодов в освещении была их высокая, по сравнению с традиционными источниками света, цена. Поворотной точкой можно считать октябрь 2006 года, когда компания Cree выпустила новую серию мощных светодиодов XLamp® XR-E в холодном белом диапазоне (цветовая температура от 5000K до 10000K) [1]. Это были первые светодиоды с достаточно высокими световыми характеристиками и надежностью, так что использование их в осветительных приборах выглядело очень перспективным и могло предполагать окупаемость первоначальных расходов в течение не очень долгого времени за счет экономии электроэнергии и сокращении затрат на обслуживание. Примерно через полгода компания Cree выпустила мощные светодиоды XLamp® серии XR-E в нейтральном и теплом белом диапазонах (цветовая температура от 2600K до 5000K), применение которых уже могло позволить ожидать подобную выгоду для большего количества применений, например, для внутреннего освещения и различных видов декоративной подсветки.

Применение мощных светодиодов для освещения

Использование в качестве источников света мощных светодиодов позволит снизить все расходы, связанные с обслуживанием и затратами электроэнергии, но высокая начальная стоимость светодиодных решений превосходит почти все сэкономленные суммы. Поэтому стоит рассматривать три основных фактора, где существенны преимущества светодиодов:

  • экономия электроэнергии,
  • отсутствие обслуживания,
  • качество света.

Эффективность мощных светодиодов, используемых для освещения, стоит рассматривать с двух сторон. Во-первых, излучение светодиодов направленное, и нет необходимости использовать отражатели, что уже позволяет избежать потерь на отражение, возникающих в ламповых светильниках. Во-вторых, технология производства светодиодов развивается очень быстро, и по прогнозам скоро световая отдача белого светодиода станет самой высокой среди всех искусственных источников света на планете. Светодиодные системы, как и все системы освещения, состоят из трех основных частей: источника питания (драйвера), источника света – светодиода или светодиодного кластера, и корпуса. Эффективность драйвера и потери в корпусе не так существенно влияют на характеристики светильника, как световая отдача источника света. Поэтому можно предположить, что оптические характеристики и эффективность системы освещения на основе светодиодов в основном определяются характеристиками светодиодов. Более того, скорость, с которой данные параметры светодиодов меняются, является беспрецедентной для светотехники: с 2003 по 2006 годы световая отдача мощных светодиодов возросла почти в 2.5 раза (с 20 лм/Вт до 47 лм/Вт) [1], а к концу 2008 года – еще примерно в два раза, достигнув значения 100 лм/Вт в диапазоне холодного белого цвета, а в естественном и теплом белом диапазонах – приблизившись вплотную к значениям 85 или 80 лм/Вт соответственно.

Отсутствие обслуживания подразумевает отсутствие сменной лампы, что приводит к уменьшению затрат в процессе эксплуатации светильника. Величина таких затрат варьируется в зависимости от применения и назначения различных светильников. Например, замена ламп в светильнике в комнате гораздо дешевле, чем замена ламп в автомобильном туннеле, когда требуется перекрыть движение по целой полосе. Во многих случаях затраты на обслуживание могут превзойти по стоимости и значимости первоначальные затраты на приобретение светильника. Мощные светодиоды, используемые для освещения, не перегорают, как обычные лампы. Они продолжают излучать свет в течение длительного времени, с незначительным снижением светового потока [2]. Снижение светового потока мощных светодиодов зависит от разных факторов, одним из которых является температура: чем выше температура светодиода и, следовательно, p-n перехода [2], тем ниже его время жизни – промежуток времени, за который световой поток светодиода достигнет 70% начального значения (L70).

В отличие от других изделий полупроводниковой электроники, где основное влияние на спрос оказывают объективные характеристики, для светодиодов это носит более субъективный характер. Например, термин «качество света» говорит о целой серии факторов, включая цвет, однородность его распределения, равномерность распределения интенсивности, качество цветопередачи и т.д. Мощные светодиоды, используемые для освещения, производятся в широком диапазоне цветовых температур – от 2600K до 10000K, имеют достаточно высокий индекс цветопередачи (75. 80), малые размеры и потребляют значительно меньше электроэнергии, чем традиционные источники света. Следовательно, при разработке можно использовать все эти преимущества для создания осветительных систем различной цветовой температуры, разных размеров, потребляемой мощности и светового потока, что не представлялось возможным при использовании источников света предыдущего поколения.

Несмотря на все успехи технологии светодиодов, применение их в освещении пока еще не носит массового характера. Примерная картина внедрения светодиодных светильников в освещение за рубежом следующая: 60% проектов касаются освещения торговых площадей и ресторанов, 30% – частных подземных гаражей, 7% – освещения офисов и лишь около 3% – уличного освещения [1]. Иначе говоря, это пока еще единичные проекты.

В 2007 г. был начат ряд серьезных проектов по применению светодиодных источников света в уличном освещении. К таким проектам относится анонсированный в феврале 2007 г. совместный проект компаний Cree, Lighting Science Group Corporation и правительства штата Северная Каролина под названием «LED City» (Светодиодный город). Проект предусматривает перевод муниципального освещения города Роли на полупроводниковое, включая уличное освещение, освещение подземных гаражей, пешеходных переходов, парков, архитектурной и акцентной подсветки. Экономические расчеты, проведенные по заказу муниципалитета г. Роли, показали, что экономия электроэнергии после реализации этого масштабного проекта составит около 40%, а срок окупаемости капитальных затрат составит около трех лет. Проект будет выполнен полностью на мощных белых светодиодах семейства XR-E7090. Помимо замены традиционных светильников на светильники со светодиодами, будет применена система интеллектуального управления освещением, позволяющая управлять потреблением электроэнергии в зависимости от изменения внешних условий.

Попытки внедрения светодиодных источников света предпринимаются и в нашей стране. В Москве в начале 2004 года была принята трехлетняя программа энергосберегающего освещения на базе светодиодных технологий. Координационный совет возглавил профессор Ю.Б. Айзенберг. Согласно этой программе, предлагалось использовать светодиоды в опытном строительстве, ЖКХ и других областях. Например, светодиодные светильники планировалось устанавливать в подземных переходах, подъездах, на лифтовых площадках, то есть там, где не нужна большая освещенность, но требуется минимум обслуживания и затрат электроэнергии, а также важна высокая вандалоустойчивость. К сожалению, на том этапе все ограничилось лишь словами. В качестве пробной реализации задуманного можно назвать лишь попытку установить образцы светодиодных светильников, собранных из светодиодов компании «Корвет Лайтс», на площадке одного из этажей в жилом доме в Москве.

В последнее время такие попытки стали более регулярными. Появляются так называемые пробные инсталляции светодиодных светильников на различных объектах. Работу в этом направлении ведут несколько компаний. Выполнен ряд проектов установки светодиодных светильников (рис. 1-4 соответственно).

Рис. 1. Подсветка здания Газпрома в Москве

Рис. 2. Подсветка жилого комплекса «Кутузовская Ривьера»

Рис. 3. Установка светильников ДВУ-25 для освещения подземного перехода около станции метро «Рижская»

Рис. 4. Освещение сортировочной станции «Новоярославская» Северной железной дороги, филиала (ОАО «РЖД»)

В последнее время некоторые российские производители традиционного осветительного оборудования начали осознавать, что СД для них не конкуренты, а возможность выведения своей продукции на новый технологический уровень и получения значительного конкурентного преимущества на рынке. Кроме производителей светотехнических изделий, во внедрении светильников на основе СД могут быть заинтересованы энергетики. Ведь экономия электроэнергии при замене ламп накаливания на СД составляет до 80 %, а люминесцентных ламп – свыше 40% [3-5].

Стоит отметить два из упомянутых выше проектов. Первый – установка светильников в подземном пешеходном переходе «метро Рижская – Рижский вокзал» в Москве. Взрывобезопасность, 50% экономии потребляемой электроэнергии, отсутствие вредных веществ, антивандальная защита – вот далеко не полная характеристика получившегося изделия. За год эксплуатации (с сентября 2007 года по октябрь 2008 года) потребление электроэнергии в подземном переходе снизилось примерно на 45%. За указанный период проводились периодические осмотры первых инсталлированных в подземном переходе светодиодных светильников, выходов из строя светильников зафиксировано не было. «В дальнейшем все используемые сейчас светильники в подземных переходах будут заменены новыми – светодиодными», – отмечают представители Мосгорсвета [6].

Положительные результаты данного проекта отмечают и представители ГУП «Моссвет»: «При снижении энергопотребления почти на 40% получена та же освещенность, с тем же распределением света, что и при использовании традиционного светильника с лампой ДНаТ. На основе упомянутого светильника разработан светодиодный светильник на пониженное напряжение (48 В) с меньшими габаритами для встраивания в потолок. Применение сверхнизкого напряжения позволит повысить безопасность электроустановок. А уменьшение габаритов светильника для подземных пешеходных переходов, где каждый сантиметр толщины потолка на счету – вопрос очень актуальный. К тому же при потолочном расположении светильников можно добиться качественного распределения светового потока, лучшей равномерности и избежать слепящего действия» [7]

Читайте также:  Датчик тока своими руками

Второй проект связан с освещением сортировочной железнодорожной станции. В 2008 году внедрение светодиодных осветительных устройств на своих объектах в рамках программы энергосбережения стало проводить ОАО «РЖД». В частности, были установлены светильники на станции «Новоярославская» Северной железной дороги. В результате внедрения светильников потребление электроэнергии на освещение объекта снизилось в 2,5 раза (по данным представителей Северной железной дороги) при выполнении в целом норм освещенности. Объект находится в опытной эксплуатации с 19 декабря 2008 года, за истекший период отказов или сбоев оборудования не зарегистрировано.

Отдельно стоит сказать о применении светодиодных светильников для уличного освещения. По заказу ГУП «Моссвет» ВНИСИ им. С.И. Вавилова проводит в данный момент тестовую эксплуатацию светодиодных уличных светильников на проезде Дубовой Рощи в Москве. Технические трудности использования светодиодов в уличных светильниках заключаются в том, что необходимо решить задачу правильного распределения света в нужном направлении. Большинство отечественных производителей пытаются использовать существующие корпуса светильников, предназначенные под лампы. Этот путь не совсем верный. Светильник с традиционной лампой годами приобретал свое конструкторское решение, основываясь на характеристиках существующих источников света – ламп. Светодиоды изначально отличаются от традиционных ламп, поэтому для получения нужной кривой силы света (КСС) необходимо либо применение вторичной оптики (линз), меняющих направление светового потока, либо расположение источников (светодиодных модулей) уже на криволинейной поверхности, рассчитанной с учетом светотехнических характеристик светодиодов. И те, и другие решения существуют в природе, остается только довести до совершенства конструкцию светового прибора.

Применение в светильниках криволинейных поверхностей для расположения светодиодов влечет за собой увеличение слепящего действия на наблюдателя – пешехода и, что особенно плохо, водителя. Поэтому применение каких-либо конструкций для доведения защитного угла до нормируемых параметров просто необходимо.

Применение вторичной оптики ведет к снижению светового потока, но есть возможность применения различных линз для применения разных вариантов КСС, необходимых для освещения того или иного типа улицы.

Помимо экономической эффективности, осветительные устройства на основе СД являются долговечными. Кроме того, светодиоды не являются хрупкими, поэтому устройства на их основе вандалостойки. Возможность низковольтного питания делает их безопасными, т.е. не являющимися потенциальными источниками возникновения пожара или взрыва. Благодаря этим факторам, а также уровню увеличившейся в последние годы световой отдачи, СД стали очень перспективными источниками света уже сейчас, и должны завоевать все большие сферы применения в ближайшем будущем.

Заключение

Системы освещения на основе мощных светодиодов могут снизить величину потребляемой электроэнергии, необходимой для получения требуемых значений световых характеристик. Прогресс в технологии производства мощных светодиодов, а также растущий энергетический кризис свидетельствуют о том, что мощные светодиоды будут играть ключевую роль в создании осветительных приборов уже в ближайшем будущем во всем мире.

Литература

1. А.Г.Полищук. Новая серия светодиодов XR-E7090 компании Cree для общего освещения. Светотехника, №3, 2007.

2. А.Г.Полищук, А.Н.Туркин. Деградация светодиодов на основе гетероструктур нитрида галлия и его твердых растворов. Светотехника, №5, стр. 44-47, 2008.

3. С.Гужов, А.Полищук, А.Туркин. Концепция применения светильников со светодиодами совместно с традиционными источниками света. СТА, №1, стр. 14-18, 2008.

4. А.Полищук, А.Туркин. Перспективы применения светильников со светодиодами для энергосберегающего освещения. Энергосбережение, №2, стр. 8, 2008.

5. А.Полищук, А.Туркин. Светодиодные светильники – эффективный метод решения проблемы энергосбережения. Энергосбережение, №3, стр. 30-31, 2008.

6. http://www.mosgorsvet.ru/teh.htm. Перспективные технологии.

7. Михаил Киптик, «Моссвет». Современные требования к светодиодным светильникам в системах наружного и архитектурного освещения. Доклад на светодиодном форуме “LED Forum”, Москва, 10-13 ноября 2009 года.

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Достоинства:

1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность

Недостатки:

1. Относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. Малый световой поток от одного элемента
3. Деградация параметров светодиодов со временем
4. Повышенные требования к питающему источнику

Внешний вид и основные параметры:

У светодиодов есть несколько основных параметров:

1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания

В основном, под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод – полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

Схема включения и расчет необходимых параметров:

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод (“минус”), а другой – анод (“плюс”).

Светодиод будет “гореть” только при прямом включении, как показано на рисунке

При обратном включении светодиод “гореть” не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Чтобы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор.

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый

рассчитываем для каждой ветви резисторы:
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

Полноцветный светодиод или по другому RGB-светодиод – Red, Green, Blue. Смешивая эти три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность (Red: 100%, Green: 100%, Blue: 100%), то получится свечение белого цвета. Если зажечь только два (Red: 100%, Green: 100%, Blue: 0%), то будет светиться желтый цвет.

Конструктивно, RGB-светодиод состоит из трех кристаллов под одним корпусом и имеет 4 вывода: один общий и три цветовых вывода.
RGB-светодиоды бывают:
1. С общим анодом (CA)
2. С общим катодом (CC)
3. Без общего анода или катода (6 выводов). Как правило в SMD-исполнении.

Самый длинный вывод RGB-светодиода, обычно является общим (анодом или катодом).

При подключении данных светодиодов, следует учесть, что напряжение, подаваемое для свечения цвета может быть разным для разных цветов.
К примеру, возьмем 5мм светодиод MCDL-5013RGB (I=20мА):
Ured = 2.0 Вольт
Ugreen = 3.5 Вольт
Ublue = 3.5 Вольт

Также следует отметить то, что для некоторых типов RGB-светодиодов необходимо использовать рассеиватель, иначе будут видны составляющие цвета.

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Свежие записи

  • Экономия энергии с пользой для здоровья. Светодиоды солнечного спектра Sunlike
  • Детская комната для мальчика. Идеи для оформления интерьеров в 2020 году
  • Детская комната для девочки. Идеи и легкое воплощение в интерьере
  • Оформление балкона. Идеи для переделки лоджии без больших вложений
  • Как скомбинировать обои при оформлении интерьера любого стиля в 2020 году

Свежие комментарии

  • Анастасия Хныкина к записи Как скомбинировать обои при оформлении интерьера любого стиля в 2020 году
  • Елена к записи Как скомбинировать обои при оформлении интерьера любого стиля в 2020 году
    18.05.2020 0
  • Без рубрикиОсвещение

Сравнение светодиодов: виды, типы, классификация, характеристики и назначение

Современный рынок осветительных приборов в значительной степени состоит из светодиодных светильников, являющихся устройствами нового поколения. Они активно применяются в качестве источников света как для городского и домашнего освещения, так и для подсветки матриц различных технических устройств. Светодиодные чипы крайне разнообразны по габаритам, функциональным и техническим характеристикам, энергоэффективности и области применения. Проведя их сравнение, можно с лёгкостью выбрать подходящий прибор в 2020 году.

Устройство и принцип работы светодиодов

Светодиодом называется прибор-полупроводник, способный преобразовывать электрический ток в видимое световое излучение. Часто применяемое обозначение светодиода ЛЕД является абберевиатурой light-emitting diode – светоизлучающий диод.

В отличие от ламп, излучение которых лежит в широком спектре, кристалл светодиода по внешнему полю излучает конкретный цвет. Диапазон освещения определяется химическими особенностями полупроводников, используемых в каждом случае.

Все модели светодиодов содержат следующие элементы:

  • катод, отвечающий за подачу отрицательной части волны постоянного тока на полупроводниковый кристалл;
  • анод, осуществляющий подачу положительной части волны на кристалл;
  • рассеиватель, увеличивающий угол свечения;
  • рефлектор, который отражает световой поток на рассеиватель;
  • кристалл или чип полупроводника, осуществляющий излучение светового потока, используя p-n переход.
  • Устройство светодиода

Конструкция диода включает два полупроводника, легированных разными примесями. Один из них содержит свободные электроны, а второй – отверстия (дырки). Это обеспечивает p-n переход между полупроводниками, когда электроны переходят от донора к реципиенту, занимая свободные отверстия и выделяя фотоны. Данная реакция возможна при наличии источника постоянного тока. На практике применяются гетероструктуры – многослойные полупроводники, имеющие самый маленький вес.

Зная, какие бывают светодиоды по мощности и по внешнему виду, можно выбрать прибор для разных случаев. Они делятся на две большие группы:

  1. Индикаторные. Маленькие светодиоды относительно небольшой мощности с умеренной яркостью. Применяются для цветовой индикации, при подсветке приборных панелей и прочего.
  2. Осветительные. Их мощность может доходить до нескольких десятков Ватт, за счёт чего достигается свечение высокой интенсивности. Используются в составе светодиодных лент и ламп для освещения помещений, в фарах и иных приборах.

Основные параметры светодиодов

Перед тем, как рассматривать особенности существующих конструкций, следует ознакомиться с основными характеристиками приборов:

  1. Светоотдача, или эффективность (Лм/Вт). Является отношением светового потока к используемой мощности. Эта величина высчитывается перед тем, как определить применимость диодов для различных осветительных систем. Модели 2020 года обладают показателями 120-140 Лм/Вт, то есть в несколько раз больше, чем у ламп накаливания.
  2. Цветовая температура (Кельвины). Применяется в следующих диапазонах:
  • 2500-3000 К – тёплый белый свет (WW);
  • 4000-5000 К – нейтральный белый свет (NW);
  • 6500-95000 К – холодный белый свет (CW).

Обратите внимание! Нейтральный свет диодов считается оптимальным для офисной работы, так как подсвечиваемые предметы имеют наибольшую чёткость.

Также выделяют цветные (синий, красный, жёлтый, зелёный) и RGB световые диоды.

3. Мощность светодиода (Вт, мА). Необходима для выбора подходящего источника питания. Диоды бывают:

  • малой мощности – менее 0,5 Вт (20-60 мА);
  • средней мощности – от 0,5 до 3 Вт (100-700 мА);
  • большой мощности – более чем 3 ватта (от 1000 мА).

Обратите внимание! Чтобы продлить срок службы блока питания, его необходимо выбирать с запасом в 15-20%, превышающим реальную мощность светодиода.

4. Угол свечения (градусы). Обычно составляет 120-140 о , для индикаторных – 15-45 о .

5. Ресурс, или деградация (часы). Определяет длительность эксплуатации. На ресурс влияют:

  • токовая деградация, когда через световые диоды пропускается избыточная сила тока;
  • температурная деградация, возникающая при некачественном отводе электронной энергии.

Обратите внимание! Чтобы лучшие светодиоды прослужили заявленное количество часов, температура в точке пайки должна быть не более 65 о С.

Индикаторные светодиоды

Индикаторные светодиодные чипы наиболее распространены. Применяются для различной подсветки и индикации, от фонарей и светофоров до бытовой техники. Современные модификации обладают большой силой света, хотя это достаточно маломощные светодиоды.

Читайте также:  Простой металоискатель своими руками

Функцию отражателей, концентрирующих световой поток, выполняют стенки и опорная пластина. Приборы имеют прямоугольные торцы с диаметром 3-10 мм и выпуклые линзы. Для них требуется источник питания в 2,5-5 В (предел по току – 20-25 мА), а если используется интегрированный резистор – 12 В. Угол свечения бывает либо широким (110-140 о ), либо узким (15-45 о ). Светоотдача белых светодиодов находится на уровне 3-5 Лм.

  • Строение индикаторного светодиода

Индикаторный диод обладает следующими преимуществами:

  • небольшая стоимость;
  • безопасные токи и напряжение светодиодов;
  • высокий уровень защиты от внешних воздействий;
  • небольшое потребление энергии с низкой теплоотдачей, позволяющей устройствам работать продолжительное время без охлаждающих радиаторов.

Среди индикаторных выделяют следующие типы светодиодов:

Тип светодиодаСтроениеКорпусЦветовой диапазонУгол рассеянияОбласть применения
DIPСамые маленькие, кристалл в выводном корпусеПрямоугольный или цилиндрический, диаметр – от 3 до 10 мм. Имеет выпуклую линзуОдно- и многоцветный (RGB), УФ и ИКДо 60 оУстройства индикации, световые табло, ёлочные украшения
Super Flux «Piranha»Имеет четыре вывода для фиксации на платеПрямоугольный, с линзой (5 или 3 мм) или безЗелёный, красный, синий и белые с разной температурой40-120 оПодсветка дневных ходовых огней, автомобильных приборов и прочего
Straw HatДва вывода, кристалл расположен возле передней стенкиЦилиндрический, радиус линзы увеличен, высота уменьшенаСиний, зелёный, жёлтый, белый и красный светодиод100-140 оИспользуются, когда требуется равномерное освещение с небольшим энергопотреблением
SMDНе имеют вывода, монтируются поверхностноТиповой размерный ряд, часть с выпуклой линзой, другая – плоские светодиодыЦветные и белые20-120 оЯвляются основой диодных лент

Наиболее технологичной и популярной является группа SMD светодиодов.

Сравнение SMD светодиодов

Применение SMD диодов повсеместно. Эти относительно маломощные светодиоды являются основой лампочек общего освещения, индикаторных панелей и систем аварийного освещения. Наибольшей популярностью пользуются светодиодные ленты на СМД диодах. Существуют и их вариации в виде модулей и линеек, где используются планарные светодиоды.

Определить тип и размер корпусов SMD диодов можно по маркировке, цифры которой обозначают ширину и длину. Новые модификации конструируются на группах, состоящих из четырёх равных по мощности светодиодов разных цветов – «G+R+W+B». Это увеличивает светоотдачу и расширяет световые оттенки, поэтому такой тип светодиодов самый яркий.

Классификация светодиодов по типоразмерам следующая:

Маркировка SMD35285630301450505730-055730-12835
Световой поток, Лм5408154010025
Мощность, Вт0,060,50,070,20,510,2
Температура, о Сдо 65до 80до 65до 65до 80до 80до 65
Ток, мА2015030601503060
Напряжение, А3,33,33,33,33,43,43,4
Габариты, мм3,5х2,85,3х33х1,45х54,8х34,8х32,8х3,5

Таблица включает усреднённые технические характеристики, которые показывают лучшие светодиоды с белым светом. Самые мощные лампы холодного и тёплого белого света обладают меньшим световым потоком и, имея равную яркость светодиодов, дают лучшее освещение, чем цветные.

Обратите внимание! Светоотдача тёплых тонов может быть на 10% меньше той, что отражают маркировка и характеристики, а холодных – на 10% больше, поэтому они самые энергоэффективные.

Реальные технические характеристики и качество светодиодов в значительной степени определяет марка светодиодов, причём колебания могут доходить до 15%. Качественные светодиоды выпускают крупные японские, европейские и китайские бренды. Бюджетные же устройства неизвестных китайских производителей, занесённые в каталог, обычно очень слабые, и вместо заявленных 0,5 Ватт могут выдавать 0,15 или даже 0,09.

Такие низкие показатели мощности объясняются тем, что внутри корпуса смонтирован кристалл меньшего размера. Это характерно для низкокачественной китайской продукции. Поэтому, самостоятельно проектируя источник питания, стоит стремиться к реальным показателям тока в нагрузке, равным около 95% от заявленного. При небольшой недогрузке можно увеличить рабочий ресурс даже для устройств, где используются не самые лучшие светодиоды.

Осветительные светодиоды

Выбирая, какие светодиоды самые яркие, стоит остановиться на осветительных. Это сверхмощные светодиоды с высокой интенсивностью излучения. Выпускаются исключительно в белом цвете, тёплом и холодном, корпус предназначен для поверхностного монтажа. Используются в лампах и светодиодных лентах, фарах, фонарях и прочем, где необходимы мощные сверхъяркие светодиоды.

Не существует естественных кристаллов, излучающих белый свет. Поэтому, чтобы создать светодиоды белого свечения, используются различные технологии, основанные на смешивании трёх основных цветов (RGB). Цветовая температура определяется способом их сочетания. Популярным методом является покрытие кристалла слоями люминофора, каждый из которых отвечает за один из трёх базовых цветов. Другой способ заключается в нанесении пары слоёв люминофора на голубой кристалл.

Можно выделить следующие преимущества осветительных диодов:

  • различное цветовое свечение;
  • возможность выбора световой температуры;
  • энергосбережение, сокращающее расходы электричества;
  • малый коэффициент пульсации;
  • разнообразная рассеиваемая мощность.
  • Строение осветительного светодиода

Среди осветительных выделяются следующие виды светодиодов:

Тип светодиодаСтроениеКорпусУгол рассеянияОбласть применения
SMDКристалл, покрытый люминофором, размещён на алюминиевой либо медной подложке, отводящей теплоВ основном прямоугольный, с линзой или без100-130 оПереносные фонари, светодиодные лампы и ленты, фары авто
COBБольшое количество светодиодов SMD в едином корпусе, покрытом люминофоромИмеют вид матрицы, чаще всего прямоугольнойдо 180 оТолько для освещения без узконаправленного излучения
FilamentКристаллы покрыты люминофором и установлены на стеклянную подложкуЦилиндрическая подложка360 оДекоративная подсветка помещений
PCB StarОдин кристалл большой площадью на подложке из алюминияПодложка в форме шестерёнки или звезды120 оМощные прожекторы и ручные фонари

Обратите внимание! Спектр свечения Filament намного приятнее для человеческого глаза, чем виды SMD и COB, и схож со светом ламп накаливания.

Типы светодиодов: особенности

Решая, какие светодиоды лучше для освещения, стоит учесть, что по величине светового потока сверхъяркий PCB Star лидирует, хоть и является разновидностью SMD диодов. Разница заключается в том, что он является точечным мощным источником света, а не совокупностью кристаллов, что упрощает фокусировку. По этой причине эти мощные сверхъяркие светодиоды удобно применять для фонаря.

Наиболее универсальными являются SMD светодиоды. Можно выделить следующие преимущества этого типа:

  • высокая энергоэффективность;
  • прочный полимерный корпус;
  • средняя стоимость;
  • ремонтопригодность;
  • длительный период эксплуатации;
  • хороший показатель охлаждаемости за счёт применения радиатора.

Данные светодиоды повышенной яркости имеют и недостатки:

  • меньшая эффективная освещённость, чем у Filament;
  • неравномерное распределение светового потока в различных направлениях;
  • бьющий направленный свет.

Филаментные приборы являются более технологичными. Такая модель представляет собой стеклянную полоску, металлизированную с обеих сторон, за счёт чего подаётся питание. Сверху на полоску приклеено некоторое количество светодиодов, покрытое люминофором. Полоски, несущие мощные светодиоды, помещаются в стеклянную колбу, имеющую вид привычной лампочки с гелием. По сути филаментная лампочка является COB диодом, помещённым в газовую среду.

К преимуществам Filament диодов относится следующее:

  • равномерность светового потока в разных направлениях;
  • яркий свет, не «режущий» глаза;
  • высокая энергоэффективность;
  • длительный период эксплуатации;
  • привычный вид колбы;
  • возможность утилизации с бытовыми отходами.

Можно выделить и ряд недостатков:

  • хрупкий стеклянный корпус;
  • высокая стоимость;
  • у дешёвых моделей – плохая охлаждаемость;
  • непригодность к ремонту.

Видео по теме (на примере сравнения лент SMD диодов 3528, 5050, 5630, 5730):

Если у вас остались вопросы после прочтения статьи “Сравнение светодиодов: виды, типы, классификация, характеристики и назначение”, задайте их в комментарии, мы обязательно постараемся дополнить материал ответами на них.

Светодиоды: виды и схема подключения

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).

Содержание статьи

  • Устройство светодиода
  • Как работает светодиод?
  • Виды и основные параметры светодиодов
  • Применение светодиодов
  • Основные правила подключения светодиодов
  • Основные характеристики светодиодов
  • Способы подключения
  • Как подключить светодиоды к сети переменного тока 220 В через блок питания
  • Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

Устройство светодиода

Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.

Как работает светодиод?

Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.

Виды и основные параметры светодиодов

На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.

По назначению светодиоды разделяют на два вида – индикаторные и осветительные.

  • светодиоды SMD;
  • сверхъяркие Super Flux “Piranha”;
  • DIP светодиоды (Direct In-line Package);
  • Straw Hat («соломенная шляпа»).
  • COB (Chip On Board) светодиоды;
  • SMD LED;
  • филаментные (Filament LED).

Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:

  • DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
  • «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
  • «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
  • SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.

Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:

  • cool white – холодный;
  • warm white – теплый.

Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.

Применение светодиодов

Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.

  • значительная длительность эксплуатации;
  • экологическая безопасность;
  • высокая надежность и безотказность;
  • экономия электроэнергии;
  • высокое качество освещения;
  • низкие эксплуатационные расходы.

Основные правила подключения светодиодов

Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:

  • По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
  • С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.

Основные характеристики светодиодов

Две главные характеристики, указываемы в паспорте светоизлучающего прибора:

  • Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
  • Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.

Способы подключения

Простейший вариант – подключение к низковольтному источнику постоянного тока.

Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.

Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:

R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:

  • Uпитания – напряжение электропитания, В;
  • Uпаспорт. – падение напряжения, паспортное значение, В;
  • Iном. – номинальный ток.

Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.

P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.

Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.

Как подключить светодиоды к сети переменного тока 220 В через блок питания

Существует несколько типов блоков питания:

  • Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
  • Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.

Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.

Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.

Минусы последовательного соединения:

  • При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
  • При выходе из строя одного LED-диода перестает работать вся цепь.

В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.

При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.

Минусы параллельного подключения:

  • большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
  • существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).

Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.

Схема подключения датчика движения для освещения

Содержание

  1. Что вам понадобится
  2. Процесс установки датчика движения
  3. Полезные материалы

1. Что вам понадобится

  • Датчик движения
  • Электропровод
  • Длинногубцы или тонкогубцы
  • Отвертка
  • Инструмент для снятия изоляции
  • Дрель
  • Дюбель-гвозди

2. Процесс установки датчика движения

Определяемся с местом установки

Корректная работа датчика движения зависит не только от правильной схемы подключения, но и от места его установки. В зависимости от угла охвата устройства монтируйте его в таком месте, чтобы в зону действия входили возможные места появления человека. Если вход в помещение один, датчик устанавливают напротив входа. Если входа два, датчик размещают на потолке. В этом случае угол охвата прибора должен составлять 360°. Кроме того, следует соблюсти еще несколько важных правил:

  • в зоне действия устройства не должно быть приборов, которые имеют электромагнитное излучение (иначе помехи могут нарушить его работу);
  • на датчик не должен быть направлен поток воздуха от кондиционера или вентилятора;
  • устройство должно находиться как можно дальше от отопительных приборов;
  • на корпус не должен падать прямой свет (если датчик устанавливается в помещении с окном, важно настроить его включение только в темное время суток).

Выполнение перечисленных требований поможет избежать ложных срабатываний или, напротив, исключит несрабатывание датчика, когда потребуется включить освещение.

Совет: если в вашем доме есть животные, и вы хотите избежать срабатывания датчика при их появлении в зоне действия, заранее выберите приемлемый для себя вариант. Либо вы будете регулировать чувствительность датчика, устанавливая минимальное значение для срабатывания, либо сразу купите модель с функцией игнорирования животных. Такие устройства не реагируют на движущиеся объекты весом менее 10 или 25 кг.

Подключаем датчик движения

Прежде чем рассматривать схему подключения датчика движения для освещения, необходимо его разобрать. Открутите с помощью отвертки заднюю панель корпуса – внутри вы увидите колодку для присоединения проводов. Стоит отметить, что процесс монтажа этого устройства чем-то схож с установкой выключателя. То есть выполняется электрическая цепь с последовательно включенным в нее светильником, а датчик замыкает или размыкает эту цепь, включая или выключая освещение. И в самом деле – в процессе нет ничего сложного. Во-первых, на колодке имеются обозначения для присоединения проводов: N – нулевой провод, L – фаза, L со стрелкой (или А) – клемма для соединения с осветительным прибором. Во-вторых, схему подключения датчика движения производитель показывает на корпусе устройства или в инструкции. Нужно лишь выбрать оптимальный способ установки. Мы опишем два наиболее распространенных.

Читайте также:  Мощный лазер своими руками за один вечер

Вариант 1: подключение через осветительный прибор. Это довольно простой и удобный способ, который не требует доступа к распределительной коробке. Отлично подходит для тех мест, где человек находится недолгое время: на крыльце, лестничной площадке, в кладовой и т.д. Устройство здесь работает следующим образом: свет включается при появлении человека в зоне действия, горит какое-то количество времени, пока есть движение, и выключается при отсутствии движения. Это очень удобно – человеку не нужно нажимать на выключатель, например, если заняты руки.

Пример схемы подключения датчика движения для освещения без выключателя

Как выполняется подключение. От клеммы L напрямую к фазе ведется провод. От клеммы N – нулевой провод, который идет также к осветительному прибору. От клеммы A провод идет к осветительному прибору

Вариант 2: подключение через выключатель. Этот способ чуть сложнее, но в ряде случаев считается более эффективным. К примеру, датчик движения устанавливается на кухне. Человек заходит в помещение – включается свет, человек садится и не двигается – через какое-то время свет выключается. Согласитесь, не очень комфортно. Именно для таких ситуаций, когда свет должен гореть без постоянного движения объекта, нужна дополнительная возможность управления освещением – установка трехпозиционного выключателя.

Пример схемы подключения датчика движения для освещения с выключателем

Как выполняется подключение. От клеммы N, как и в предыдущем случае, нулевой провод отходит в распределительную коробку к нулевому проводнику. Там идет разводка на осветительный прибор. От клеммы L фазный провод идет к трехпозиционному выключателю и подключается к клемме, которая отвечает за среднее положение клавиши. Именно в этом положении управление освещением будет осуществляться датчиком движения. От клеммы A идет третий провод, который соединяет датчик движения и осветительный прибор. В свою очередь от осветительного прибора на выключатель идет провод к клемме с верхним положением клавиши. В таком случае управление освещением осуществляется с помощью выключателя. Нижнее положение клавиши – это выключение света

Крепим датчик

После выполнения монтажа в соответствии со схемой подключения датчика движения следует собрать корпус прибора и закрепить его на стене или потолке. В выбранном месте просверлите отверстие (или два – в зависимости от способа крепления корпуса), вставьте туда дюбели и закрепите устройство с помощью саморезов. Если корпус поворотный, направьте его на предполагаемую зону действия. Готово – осталось только настроить и протестировать прибор.

Выполняем настройку

Стандартно у датчика движения есть три регулятора: освещенность, время и чувствительность. С их помощью прибор настраивают для корректного срабатывания практически под любые условия эксплуатации. Настройка большинства моделей идентична. Важно, что делается она при выключенном освещении. Регулятор чувствительности следует повернуть до упора по часовой стрелке, а регулятор времени – до упора против часовой стрелки. Для настройки на тестирование датчику может потребоваться около минуты. После этого выполните проверку: выходите и входите в помещение либо в зону действия датчика, если он установлен на улице. Датчик должен включать свет и выключать его. Важно, чтобы между тестами проходило более 5 секунд. После этого вы можете настраивать чувствительность и время срабатывания так, как вам нужно. Поворачивайте регуляторы и тестируйте – методом проб и ошибок вы точно подберете комфортный для вас режим работы датчика. Подробное руководство по настройке вы найдете в инструкции и без проблем справитесь с этой задачей.

Будьте уверены – правильный монтаж и настройка, а также подходящая схема подключения датчика движения избавят вас от проблем во время эксплуатации. Свет будет включаться при вашем появлении в зоне работы устройства и отключаться, как только вы покинете ее. В этом и заключается принцип корректной работы прибора, который служит для удобства и экономии. Можно снизить расход электроэнергии на 50 – 70%. Если вас заинтересовала возможность установки датчика своими руками, купить его вы можете в нашем интернет-магазине уже сейчас.

Датчик движения для включения освещения

Включать освещение в некоторых помещениях или на улице на весь темный период неразумно. Чтобы свет горел только тогда когда нужно, в цепь питания светильника ставят датчик движения. В «нормальном» состоянии он разрывает цепь питания. При появлении в его зоне действия какого-то движущегося предмета, контакты замыкаются, освещение включается. После того, как объект пропадет из зоны действия, свет выключается. Такой алгоритм работы отлично показал себя в уличном освещении, в освещении подсобных помещений, коридоров, подвалов, подъездов и лестниц. В общем, в тех местах, где люди появляются только периодически. Так что для экономии и удобства лучше поставить датчик движения для включения света.

Виды и разновидности

Датчики движения для включения света могут быть разных типов, предназначены для различных условий эксплуатации. В первую очередь надо смотреть где может устанавливаться устройство.

Датчик движения для включения света нужен не только на улице

Уличные датчики движения имеют высокую степень защиты корпуса. Для нормальной эксплуатации на открытом воздухе берут датчики с IP не ниже 55, но лучше — выше. Для установки в доме можно брать IP 22 и выше.

Тип питания

Далее надо учесть, от какого источника питается датчик света. Есть следующие варианты :

  • Проводные датчики с питанием от сети 220 В.
  • Беспроводные, с питанием от батареек или аккумуляторов.

Датчики движения бывают проводными и беспроводными

Самая многочисленная группа — проводные для подключения к 220 В. Беспроводных меньше, но их тоже достаточно. Они хороши если включать надо освещение, работающее от низковольтных источников тока — аккумуляторных или солнечных батарей, например.

Способ определения наличия движения

Датчик движения для включения света может определять движущиеся объекты используя различные принцип детекции:

  • Инфракрасные датчики движения. Реагируют на тепло, выделяемое телом теплокровных существ. Относятся к пассивным устройствам, так как сам ничего не вырабатывает, только регистрирует излучение. Эти датчики реагируют на движение животных в том числе, так что могут быть ложные срабатывания.
  • Акустические датчики движения (шума). Также относятся к пассивной группе оборудования. Они реагируют на шум, могут включаться от хлопка, звука открываемой двери. Они могут использоваться в подвалах частных домов, где шум возникает только туда кто-нибудь заходит. В других местах применение ограничено.

Работа инфракрасных датчиков движения основаны на отслеживании тепла, выделяемого человеком

Разное исполнение, но цвет, в основном, белый и черный

Чаще всего для включения света на улице или дома используют инфракрасные датчики движения. Они имеют невысокую цену, большой радиус действия, большое количество регулировок, которые помогут настроить его. На лестницах и в длинных коридорах лучше поставить датчик с ультразвуком или микроволновой. Они в состоянии включить освещение даже если вы еще далеко от источника света. В охранных системах рекомендованы к установке микроволновые — они обнаруживают движение даже за перегородками.

Технические характеристики

После того, как определились с тем, какой датчик движения для включения света вы будете ставить, надо подобрать его технические характеристики.

В технических характеристиках беспроводных моделей есть еще частота, на которой они работают и тип элементов питания

Угол обзора

Датчик движения для включения света может обладать различным углом обзора в горизонтальной плоскости — от 90° до 360°. Если к объекту могут подходить с любого направления, ставят датчики с радиусом 180-360° — в зависимости от его расположения. Если устройство закреплено на стене, достаточно 180°, если на столбе — уже нужно 360°. В помещениях можно использовать те, которые отслеживают движение в узком секторе.

В зависимости от места установки и требуемой зоны обнаружения выбирают радиус обзора

Если дверь одна (подсобное помещение, например), может быть достаточно узкополосного датчика. Если в помещение входить могут с двух-трех сторон, модель должна уметь видеть, как минимум, на 180°, а лучше — во все стороны. Чем шире»охват», тем лучше, но стоимость широкоугольных моделей значительно выше, так что стоит исходить из принципа разумной достаточности.

Есть также угол обзора по вертикали. В обычных недорогих моделях он составляет 15-20°, но есть модели, которые могут охватывать до 180°. Широкоугольные детекторы движения обычно ставят в охранных системах, а не в системах освещения, так как стоимость их солидная. В связи с этим, стоит правильно подбирать высоту установки прибора: чтобы «мертвая зона», в которой детектор просто ничего не видит, была не в том месте, где движение наиболее интенсивное.

Дальность действия

Тут снова-таки, стоит выбирать с учетом того, в помещении будет устанавливаться датчик движения для включения света или на улице. Для помещений радиуса действия в 5-7 метров хватит с головой.

Дальность действия выбирайте с запасом

Для улицы желательна установка более «дальнобойных». Но тут тоже смотрите: при большом радиусе охвата ложные срабатывания могут быть очень частыми. Так что слишком большая зона покрытия может быть даже недостатком.

Мощность подключаемых светильников

Каждый датчик движения для включения света рассчитан на подключение определенной нагрузки — он может пропускать через себя ток определенного номинала. Потому, при выборе, надо знать, суммарную мощность ламп, которые устройство будет подключать.

Мощность подключаемых светильников критична, если включаться будет группа фонарей или один мощный

Чтобы не переплачивать за повышенную пропускную способность датчика движения, да еще и сэкономить на счетах за электричество, используйте не лампы накаливания, а более экономичные — газоразрядные, люминесцентные или светодиодные.

Способ и место установки

Кроме явного деления на уличные и «домашние» есть еще один тип деления по месту установки датчиков движения:

  • Корпусные модели. Небольшая коробочка, которая может монтироваться на кронштейне. Кронштейн закрепляться может:
    • на потолке;
    • на стене.

    Вид датчика движения по внешнему виду не определишь, можно лишь понять на потолке он устанавливается или на стене

    Если освещение включается только для повышения комфорта, выбирают корпусные модели, так как при равных характеристиках они дешевле. Встраиваемые ставят в охранных системах. Они миниатюрные, но более дорогие.

    Дополнительные функции

    Некоторые детекторы движения имеют дополнительные возможности. Некоторые из них явное излишество, другие, в определенных ситуациях, могут быть полезны.

    • Встроенный датчик освещенности. Если датчик движения для включения света установлен на улице или в помещении с окном, включать свет в светлое время суток нет необходимости — освещенность достаточная. В этом случае либо в цепь встраивают фотореле, либо используют детектор движения со встроенным фотореле (в одном корпусе).
    • Защита от животных. Полезная функция, если есть коты, собаки. С такой функцией ложных срабатываний намного меньше. Если собака большого размера, даже эта опция не спасет. Зато с кошками и мелкими собаками она работает неплохо.

    Для многих полезной функцией будет защита от срабатывания при появлении животных

    Это все функции, которые могут быть полезны. Особенно обратите внимание на защиту от животных и задержку отключения. Это действительно полезные опции.

    Где разместить

    Установить датчик движения для включения освещения надо правильно — чтобы работал он корректно, придерживайтесь определенных правил:

    • Рядом не должно быть осветительных приборов. Свет мешает корректной работе.
    • Поблизости не должно быть отопительных приборов или кондиционеров. Детекторы движения любого типа реагируют на потоки воздуха.

    С увеличением высоты установки увеличивается зона обнаружения, но снижается чувствительность

    В больших помещениях устройство лучше устанавливать на потолке. Его радиус обзора должен быть 360°. Если датчик должен включать освещение от любого движения в помещении, его устанавливают по центру, если контролируется только какая-то часть, расстояние выбирается так, чтобы «мертвая зона» бала минимальной.

    Датчик движения для включения света: схемы установки

    В самом простом случае датчик движения подключается в разрыв фазного провода, который идет на лампу. Если речь идет о темном помещении без окон, такая схема работоспособна и оптимальна.

    Схема включения датчика движения для включения света в темном помещении

    Если говорить конкретно о подключении проводов, то фаза и ноль заводятся на вход датчика движения (обычно подписаны L для фазы и N для нейтрали). С выхода датчика фаза подается на лампу, а ноль и земля на нее берем со щитка или с ближайшей распределительной коробки.

    Если же речь идет об уличном освещении или включении света в помещении с окнами, надо будет или ставить датчик освещенности (фотореле), или устанавливать на линии выключатель. Оба устройства предотвращают включение освещения в светлое время суток. Просто одно (фотореле) работает в автоматическом режиме, а второе включается принудительно человеком.

    Схема подключения датчика движения на улице или в помещении с окнами. На месте выключателя может быть фотореле

    Ставятся они также в разрыв фазного провода. Только при использовании датчика освещенности, его надо ставить перед реле движения. В таком случае оно будет получать питание только после того как стемнеет и не будет работать «вхолостую» днем. Так как любой электроприбор рассчитан на определенное количество срабатываний, это продлит срок эксплуатации датчика движения.

    Все описанные выше схемы имеют один недостаток: освещение нельзя включить на длительное время. Если вам надо вечером проводить какие-то работы на лестнице, вам придется все время двигаться, иначе периодически свет будет отключаться.

    Схема подключения датчика движения с возможностью длительного включения освещения (в обход датчика)

    Для возможности длительного включения освещения, параллельно с детектором устанавливается выключатель. Пока он выключен, датчик в работе, свет включается когда он срабатывает. Если вам надо включить лампу на длительный период, щелкаете выключателем. Лампа горит все время, пока выключатель снова не будет переведен в положение «выключено».

    Регулировка (настройка)

    После монтажа, датчик движения для включения света необходимо настроить. Для настройки почти всех параметров на корпусе есть небольшие поворотные регуляторы. Их можно поворачивать, вставив в прорезь ноготь, но лучше использовать маленькую отвертку. Опишем регулировку датчика движения типа ДД со встроенным датчиком освещенности, так как они чаще всего ставятся в частных домах для автоматизации уличного освещения.

    Угол наклона

    Для тех датчиков, которые крепятся на стенах, сначала надо выставить угол наклона. Они закреплены на поворотных кронштейнах, при помощи которых и изменяется их положение. Его надо выбрать так, чтобы контролируемая область была самой большой. Точные рекомендации дать не получится, так как зависит это от угла вертикального обзора модели и от того, на какой высоте вы его повесили.

    Регулировка датчика движения начинается с выбора угла наклона

    Оптимальная высота установки датчика движения — около 2.4 метра. В этом случае даже те модели, которые могут охватывать всего 15-20° по вертикали контролируют достаточное пространство. Настройка угла наклона — это очень приблизительное название того, чем вам придется заниматься. Будете понемногу менять угол наклона, проверять, как срабатывает в таком положении датчик с разных возможных точек входа. Несложно, но муторно.

    Чувствительность

    На корпусе эта регулировка подписана SEN (от английского sensitive — чувствительность). Положение можно менять от минимального (min/low) до максимального (max/hight).

    В основном, регулировки выглядят так

    Это — одна из самых сложных настроек, так как от нее зависит будет ли срабатывать датчик на мелких животных (кошек и собак). Если собака большая, избежать ложных срабатываний не удастся. Со средними и мелкими животными это вполне возможно. Порядок настройки такой: выставляете на минимум, проверяете, как срабатывает на вас и на обитателей меньшего роста. Если необходимо, понемногу чувствительность увеличиваете.

    Время задержки

    У разных моделей диапазон задержки выключения разный — от 3 секунд до 15 минут. Вставлять его надо все также — поворотом регулировочного колеса. Подписано обычно Time (в переводе с английского «время»).

    Время свечения или время задержки — выбираете как вам больше нравится

    Тут все относительно легко — зная минимум и максимум вашей модели, примерно выбираете положение. После включения фонаря замираете и засекаете время, по истечении которого он отключится. Далее меняете положение регулятора в нужную сторону.

    Уровень освещенности

    Эта регулировка относится к фотореле, которое, как мы договорились, встроено в наш датчик движения для включения света. Если встроенного фотореле нет, ее просто не будет. Эта регулировка подписывается LUX, крайние положения подписаны min и max.

    Находится они могут на лицевой или тыльной стороне корпуса

    При подключении регулятор выставляете в максимальное положение. А вечером, при том уровне освещенности, когда вы считаете должен уже включаться свет, поворачиваете регулятор медленно к положению min до тез пор, пока лампа/фонарь включатся.

    Вот теперь можно считать, что реле движения настроено.

Ссылка на основную публикацию