Немного о трансформаторах

Что такое понижающий трансформатор и принцип его работы

Понижающие трансформаторы относятся к категории преобразователей значения электрического тока. Причем их входящее напряжение будет выше, чем исходящее. Представленные установки применяются в линиях электропередач и быту. Принцип работы понижающих приборов, особенности и применение будут рассмотрены далее.

  • 1 Конструкция
    • 1.1 Интересное видео: Понижающий трансформатор
  • 2 Назначение
  • 3 Расчет характеристик оборудования
  • 4 Разновидности
  • 5 Распространенные модели
    • 5.1 Интересное видео: Сетевой понижающий трансформатор
  • 6 Как выбрать?
  • 7 Установка и эксплуатация

Конструкция

В принципе работы трансформаторов используется физический закон электромагнитной индукции. Стандартные устройства имеют сердечник и две обмотки. Первичная обмотка понижающего трансформатора подключается к электрической сети. Вокруг сердечника магнитопривода генерируется магнитное поле. Во вторичной обмотке появляется электричество с определенным показателем напряжения.

Мощность на выходе определяется соотношением количества витков в обеих катушках. Соотношением витков, составляющих обмотку первичной и вторичной катушек, можно выбирать характеристики выходного напряжения. Устройство трансформаторов позволяет получить требуемое значение тока для питания промышленных и бытовых электроприборов.

Трансформаторы напряжения не меняют частоту тока. Для этого понижающему агрегату потребуется иметь в конструкции выпрямитель. Он будет менять частоту тока с переменного до постоянного значения, и наоборот.

В понижающих трансформаторах сегодня применяются полупроводники. Их работу дополняет схема интегрального типа. В цепь включаются конденсаторы, микросхемы, пьезоэлементы, резисторы и т. д. Такой понижающий бытовой трансформатор имеет небольшие габариты, высокий уровень КПД, малый вес. Он не шумит, не нагревается. В трансформаторах представленных типов допускается выбрать мощность исходящего тока. Устройство включает в схему защиту против короткого замыкания. Традиционные конструкции также пользуются спросом. Подобные схемы просты, надежны.

Интересное видео: Понижающий трансформатор

Назначение

Трансформаторы понижающие применяются в различных сферах человеческой деятельности. Силовые конструкции устанавливаются на подстанциях на пути следования линий электропередач. Представленные типы аппаратов понижают при работе показатель тока в сети от 380 до 220 В. При такой мощности работают бытовые электроприборы. Представленная установка называется промышленным трансформатором понижения тока.

К бытовым понижающим разновидностям относят приборы, которые работают на более низких мощностях. Они принимают 220 В на первичный контур, а выдают 42, 36, 12 В, учитывая требования потребителя.

Расчет характеристик оборудования

Трансформатор понижающий может относиться к различным категориям, что зависит от ряда параметров. Помимо конструкционных отличий (наличие пьезоэлементов, конденсаторов и т. д.) оборудование отличается мощностью, назначением, строением. Общим для них является коэффициент трансформации. Он всегда будет меньше 1. Не существует понижающий трансформатор с коэффициентом больше 1. Такие приборы относятся к категории повышающих агрегатов.

Чтобы подобрать правильное количество витков в контурах, производится расчет. Известно, что коэффициент трансформации, равен 0,2. Прибор понижает напряжение в сети. В первичной обмотке 120 витков. Определим количество витков во вторичной катушке:

ВО = 120*0,2 = 24 витка.

Используя коэффициент трансформации, определяем выходное напряжение. Если на первичную обмотку поступает ток 220 В, расчет будет таким:

НВ = 220*0,2 = 44 В.

Зная коэффициент трансформации, как определить мощность оборудования, не составит труда. Когда мы выбираем прибор для изменения параметров тока в цепи, требуется определение потребностей стандартных потребителей. При пониженной нагрузке в сети бытовая техника не будет работать правильно. Чтобы в трансформаторе не вырабатывалось слишком низкое значение тока, обязательно учитывают коэффициент трансформации.

Разновидности

Когда потребность промышленного или бытового оборудования в вопросе уровня напряжения определена, нужно обратить внимание на выбор разновидности аппарата. Различают следующие виды:

  1. Тороидальный. Сердечник получил форму тора. Прибор характеризуется малым весом, незначительными габаритами. Широко применяется в радиоэлектронике.
  2. Стержневый. Применяются для оборудования высокой или средней мощности. Простота конструкции отличает устройство сердечника.
  3. Броневой. Относятся к категории маломощных конструкций. Магнитопривод как броня охватывает контуры.
  4. Многообмоточный. Имеет две и более обмотки.
  5. Трехфазный. Применяется в промышленной сети. Прибор призван понижать напряжение с 380 В до приемлемого потребителем уровня. В некоторых случаях применяется в бытовых целях.
  6. Однофазный. Подключаются к однофазной сети. Это одна из наиболее востребованных разновидностей.

Многообразие представленных конструкций позволяет применять их в различных сферах деятельности человека. Стоимость оборудования зависит от мощности аппаратуры, сложности конструкции, области применения. Про понижающие трансформаторы 380/220 мы уже писали на этой странице.

Видео: Силовой понижающий трансформатор с несколькими вторичными обмотками.

Распространенные модели

Покупатели отдают предпочтение в большинстве случаев всего нескольким моделям. Чтобы правильно выбрать аппаратуру, потребуется знать их маркировку, ее расшифровку. Большим спросом пользуются такие модели:

  1. ТСЗИ. Трехфазная разновидность, внутренняя конструкция которой защищена специальным кожухом.
  2. ОСМ. Применяются в системах сигнализации, освещения. Их устанавливают в специальный ящик. Внутрь корпуса не должна попадать грязь, пыль, влага. Монтируются на дин-рейку.
  3. ТТп, ТС-180, ЯТП применяются в бытовых сетях. Монтируются просто. Используются для напряжения невысокого уровня.
  4. ОСОВ, ОСО. Обладает сухой системой охлаждения. Применяют в бытовых сетях.

Информация о разновидности прибора приведена в маркировке. Она указывается на корпусе трансформатора. Маркировка находится в открытом доступе для обслуживающего персонала.

Интересное видео: Сетевой понижающий трансформатор

Как выбрать?

Выбрать трансформаторное устройство представленного типа может профессионал. Существует несколько правил в проведении этого процесса. В первую очередь следует обратить внимание на показатель входного напряжения. Оборудование должно быть рассчитано на прием определенного напряжения.

Затем нужно установить, какой уровень тока требуется потребителю. В соответствии с этой характеристикой выбирают параметры выходного напряжения. Мощность приборов, подведенных к трансформатору, должна быть немного ниже, чем его выходное напряжение.

Качественные изделия выдерживают аварийные ситуации. В них предусмотрена особая защита от короткого замыкания, перенапряжения, резких скачков электричества, перегрузок. В этом случае система работает стабильно даже в неблагоприятных условиях.

Установка и эксплуатация

Внутреннюю часть представленного агрегата нужно тщательно защищать от неблагоприятных внешних воздействий. В корпус не должны попадать пыль, влага, грязь и прочие посторонние вещества. Поэтому оборудование устанавливается в защитный корпус, кожух или ящик. В него должен быть обеспечен легкий доступ. Обслуживающий персонал при необходимости быстро произведет осмотр системы в случае необходимости.

Монтаж нужно проводить таким образом, чтобы исключить вероятность случайного соприкосновения человека к неизолированным проводникам тока. Агрегат подключается к заземлению при помощи медного провода. Сечение должно составлять от 2,5 мм и более.

Периодически производится осмотр, обслуживание и ремонт трансформаторов. Неисправности должны вовремя устраняться.

Интересное видео: Как намотать своими руками сетевой понижающий трансформатор 220 на 12 вольт?

При выборе места установки, условий эксплуатации обязательно учитывают требования производителя. ГОСТ устанавливает климатическое исполнение, которое должно учитываться при установке.

Рассмотрев особенности, применение и условия эксплуатации понижающих трансформаторов, можно выбрать оптимальную разновидность приборов.

Подробно о трансформаторе напряжения

Электричество, впервые этот термин ввел Уильям Гилберт. В одном из своих трудов он описал опыты с наэлектризованным телом. С тех пор прошло много лет, в течении которых не прекращались исследования в этой отрасли. В них принимали участие лучшие ученые умы различных эпох. В итоге появились электрические станции, все населенные пункты опутывает сеть линий электропередач. И сложно представить себе, что еще относительно недавно человек обходился без электроэнергии.

Ведь сегодня она является необходимым условием для жизни и деятельности людей. Но чтобы все современное оборудование обеспечить электроэнергией необходимо осуществлять ее передачу на дальние расстояния. Сделать это можно, используя трансформатор напряжения. Этот прибор позволил уменьшить потери в проводах, а также адаптировать параметры сети под конкретного потребителя. Чтобы понять, как небольшое устройство сумело справиться со столь сложными задачами, рассмотрим его конструктивные особенности.

  1. Область применения
  2. Виды и типы приборов
  3. Аспекты подбора оборудования
  4. Рекомендации специалистов

Назначение и сфера применения трансформаторов

Функция электрических сетей заключается как в выработке энергии, так и ее передаче на большие расстояния, а затем и распределении между потребителями. Вот для чего нужен специальный электромагнитный аппарат или трансформатор напряжения. Такие приборы находят широкое применение на электрических станциях. Они способны повышать или понижать напряжение.

Смотрим видео, немного о трансформаторах и их действии:

Применяется такое оборудование как в закрытых помещениях, так и уличных условиях. Благодаря использованию повышающих трансформаторов на таких объектах стало возможным передавать энергию на дальние расстояния с минимальными потерями в проводах. Это обеспечивается за счет уменьшения пощади сечения кабелей линий электропередачи.

Но так как поступающее со станции высокое напряжение не может использоваться потребителями, то на входе обычно устанавливаются понижающие трансформаторы. Они позволяют получить сравнительно небольшие значения, при которых возможна работа оборудования и бытовой техники.

Простейший из таких приборов состоит из двух основных частей:

  • Магнитопровода, выполненного из стали;
  • Двух обмоток из проводов с изоляцией.

Одна из них называется первичной, так как на нее подается ток. Обмотка, к которой подключаются потребители называется вторичной.

Принцип работы трансформатора напряжения заключается в следующем. Подключение его к сети приводит к поступлению тока на первичную обмотку. Переменный поток, образованный им, проходит по магнитопроводу. При этом в витках обмоток индуцируются переменные ЭДС. Величина этой силы зависит от скорости изменения магнитного потока и того, как быстро он изменяется. А так как эти параметры являются постоянными для каждого прибора, то можно сделать вывод, что одинаковыми будут и индуцируемые в каждой обмотке ЭДС.

Виды и их особенности

Кроме рассмотренных выше понижающих и повышавших приборов выпускаются и другие модели:

  • Тяговые;
  • Лабораторные, в которых возможно регулировать напряжение;
  • Для выпрямительных установок;
  • Источники питания для радиоаппаратуры.

Все они относятся к одной большой группе трансформаторов – силовым. Есть еще одна разновидность такого оборудования. Это устройства, используемые для подключения к цепям высокого напряжения различных электроизмерительных приборов. Они получили название измерительных трансформаторов напряжения. Также эти приборы находят широкое применение при электросварке.

Имеют отличия и в конструктивном исполнении. В зависимости от этого различают двух и многообмоточные измерительные трансформаторы тока и напряжения. Такие приборы используются для проведения измерений и питания цепей автоматики, релейной защиты. Они могут быть одно- или трехфазные с масляным или воздушным охлаждением.

Смотрим видео классификация трансформаторов:

Влияет на классификацию и форма магнитопровода. Он может быть:

  1. Стержневой;
  2. Броневой;
  3. Тороидальный.

При этом различают два вида конструкции обмоток:

  • Концентрический;
  • Дисковый.

По классу точности устройства подразделяются на 4 категории:

  • 0,2;
  • 0,5;
  • 1,0;
  • 3.

Еще одним параметром, влияющим на специфику применения измерительных трансформаторов тока и напряжения, является способ установки. В зависимости от него изделия бывают следующих типов:

  • Внутренние;
  • Наружные;
  • Для КРУ.

Критерии выбора оборудования

Обычно приобретая оборудование ориентируются не его основные параметры. Для трансформатора таковыми являются:

  • Напряжения обмоток, которые указываются на щитке;
  • Коэффициент трансформации;
  • Угловой погрешности.

Необходимо также ориентироваться на условия эксплуатации. Поэтому самыми важными параметрами при выборе оказываются нагрузка, сфера применения и напряжение короткого замыкания трансформатора. На первом этапе необходимо убедиться в том, что мощности модели будет достаточно для того чтобы справиться не только с поставленной задачей, но и возможными перегрузками. Неплохо иметь прибор, параметры которого могут быть изменены в процессе эксплуатации.

Читайте также:  Прибор ночного видения

Но ориентироваться только на эти характеристики недопустимо. Так как для эффективной работы трансформатора напряжения 110 кВ важны и его технические характеристики:

  1. Частота тока;
  2. Фазность;
  3. Способ установки;
  4. Место расположения;
  5. Нагрузка.

Кроме этого нужно определить подходит ли вам цена устройства, а также стоимость его дальнейшего обслуживания. Соответствуют ли они ожидаемым цифрам?

Но даже выбрав модель в соответствии со всеми перечисленными требованиями стоит учитывать возможность ее подключения к цепи измерительных приборов для трансформаторов соответствующего типа.

Если предполагается использовать устройство в качестве защитного, то можно ограничиться изделием со средними показателями точности. В случае проведения измерений с минимальными погрешностями выбирают лабораторные трансформаторы напряжения 10 кВ.

Обслуживание и эксплуатация

Приобретая приборы для бытового обслуживания стоит воспользоваться услугами профессиональных консультантов. Они, имея необходимые знания и опыт помогут выбрать оптимальную модель.

Смотрим видео, диагностика и обслуживание:

Но чтобы оборудование работало эффективно необходимо еще и правильно его эксплуатировать. Установка и использование трансформаторов выполняются в соответствии с нормативными документами. В них же оговаривается и порядок обслуживания приборов. Согласно этим документам после монтажа устройства необходимо проверить схемы включения и все элементы во вторичных цепях. Исходя из полученных результатов оценивают возможность включения трансформатора в работу.

Чтобы убедиться в исправности прибора следует измерить;

  • Сопротивление на обмотках;
  • Ток.

Уровень масла в трансформаторах должен поддерживаться в пределах шкалы в зависимости от температуры окружающей среды. Также периодически устройство проверяют на предмет отсутствия протекания масла и чистоту изоляции. Для этого используют специальный индикатор – силикагель. При насыщении влагой он приобретает розовый окрас, в то время как в нормальном состоянии он голубого цвета.

В процессе обслуживания прибора необходимо соблюдать меры безопасности. Они регламентируются нормативными документами. Осмотр трансформатора под напряжением допускается выполнять, находясь на безопасном расстоянии от токоведущих частей.

Что касается ремонтных работ, то для их проведения прибор должен быть отключен от сети. Запрещено эксплуатировать трансформатор с незаземленным цоколем, а все неисправности должны устраняться специалистами. Исправное оборудование в процессе работы издает равномерный звук без треска и резких шумов.

Кроме того, в сетях до 10 кВ случаются резонансные повышения напряжения. Причиной их появления считается многократные разряды емкости, получающиеся в результате дугового замыкания. Это в свою очередь приводит к образованию феррорезонанса в трансформаторе напряжения и выходу его из строя. Избежать этого можно при заземлении нейтрали через резистор.

Трансформатор простыми словами

Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

Рис. 1. Промышленный трансформатор

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Рисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Рисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Если k > 1, то трансформатор повышающий, а при 0 Виды магнитопроводов

Более широкий спектр охватывает классификация по назначению.

Силовые

Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

Автотрансформаторы

Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Трансформатор тока

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Импульсные

В работе современной электронике применяются высокочастотные сигналы, которые часто необходимо отделить от других сигналов.
Задача импульсных трансформаторов – преобразования импульсных сигналов с сохранением формы импульса.

Для высокочастотных импульсных аппаратов выдвигаются требования о максимальном сохранении формы импульса на выходе. Имеет значение именно форма, а не амплитуда и даже не знак.

Сварочные

В работе сварочного аппарата важен большой сварочный ток. При этом, сетевое напряжение понижают до безопасного уровня. Благодаря мощному электрическому току дуговой разряд сварочного аппарата плавит металл.

В сварочном трансформаторе имеется возможность ступенчатого регулирования величины тока во вторичных цепях способом изменения индуктивного сопротивления, либо путем секционирования одной из обмоток.

Фото устройства представлено на рисунке 6. Обратите внимание на наличие коммутирующего переключателя.

Рис. 6. Трансформатор для сварочного полуавтомата на броневом магнитопроводе

В сварочных аппаратах применяют конструкции на основе однофазных трансформаторов, а также с применением трехфазных трансформаторов. Для сварки некоторых металлов, например, нержавейки, сварочный ток выпрямляют.

Разделительные

Устройства, в которых нет электрической связи между обмотками, называют резделительными трансформаторами. Силовые разделительные аппараты применяются для повышения безопасности электросетей. Другая область применения разделительных трансформаторов – обеспечение гальванической развязки между отдельными узлами электрических цепей.

Согласующие

Данные типы аппаратов применяют для согласования сопротивления каскадов электронных схем. Они обеспечивают минимальное искажение формы сигналов, создают гальванические развязки между узлами электронных устройств.

Пик-трансформаторы

Аппараты, преобразующие синусоидальные токи в импульсные напряжения. Полярность выходных напряжений меняется через каждых полпериода.

Воздушные и масляные

Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

Рисунок 7. Сухой трехфазный трансформатор

При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

Рис. 8. Строение промышленного трансформатора с масляным охлаждением

Сдвоенный дроссель

Конструктивно такой аппарат является трансформатором с одинаковыми катушками. Катушки одинаковой мощности образуют встречный индуктивный фильтр. Эффективность аппарата выше, чем у дросселя (при одинаковых размерах).

Вращающиеся

Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

Читайте также:  Способ соединения медного и алюминиевого проводов

Обозначение на схемах

Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

Пример обозначения

На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

Области применения

Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Читайте также:  Сборка схем - Электрозаборы, электроизгороди, электропастухи своими руками

Что такое понижающий трансформатор: виды, принцип устройства и работы, советы по выбору и расчет основных параметров трансформатора

Понижающие трансформаторы представляют собой механизмы, регулирующие интенсивность электрического тока. Суть работы заключается в том, что поступающий ток обладает большей интенсивностью, чем выходящий. Именно поэтому данные конструкции можно чаще всего встретить в линиях электропередач и, конечно же, в бытовых условиях. Подробнее о понижающем трансформаторе тока читайте далее.

Краткое содержимое статьи:

Характеристики трансформатора

Конструкция ящика с трансформатором может быть самой разнообразной. Главным элементом механизма является ферромагнитный сердечник, обмотки которого обрамлены специальным проводником из меди. Первичная часть обмотки контролирует напряжение в сети, вторичная же занимается снятием сниженного напряжения.

Сердечник излучает переменный ток, который создает связь между двумя существующими обмотками. Обмотки не связаны друг с другом электрическим током. К слову, способность снижать напряжение возникает благодаря различию в количестве завитков между этими составляющими.

Чаще всего эти элементы защищены специальным корпусом, однако особенности строения и разновидностей допускают различные вариации.

Виды понижающих трансформаторов

  • Однофазные модели являются самыми популярными, подключаются к одноименной сети.
  • К трехфазным относятся понижающие трансформаторы 380 В, которые снижают уровень напряжения до нужного уровня.
  • Многообмотчатый тип содержит более двух обмоток.
  • Броневой типаж не отличается большой мощностью. Обрамлен магнитоприводом.
  • Тороидальный типаж является излюбленным для мастеров радиоэлектроники. Является достаточно миниатюрным, но мощным.
  • Стержневые трансформаторы не отличаются витиеватостью конструкций и отлично справляются со средним и высоким напряжением.

Функции трансформаторов

Итак, зачем же нужны понижающие трансформаторы? Начнем с того, что очень часто этот механизм регулирует силу напряжения в сети в промышленных зданиях.

Так, понижающий трансформатор 220 В нашел широкое применение в промышленности и домашнем хозяйстве. Кроме бытового значения, данные конструкции снижают напряжение в линиях электропередач и регулируют работу тока.

Обмотки и их свойства

Между обмотками существуют специальные прокладки, ограничивающие поступление тока и его движение между двумя элементами. Катушки обмотаны изолированными проводами, обмотанными слоями бумаги. Проводящие части могут иметь круглую или прямоугольную форму. Могут иметь дисковый или стержневой тип обматывания.

Как выбрать понижающий трансформатор?

Существует масса разновидностей и типажей трансформаторов, однако при их выборе следует отдавать внимание ниже указанным характеристикам:

  • Параметр входящего напряжения, параметр которого обычно промаркирован на корпусе изделия. Для бытовых целей используется трансформатор 220 В.
  • Маркировка на корпусе устройства также должна свидетельствовать о величине выходящей энергии. Для того, чтобы ознакомиться подробнее с особенностями корпуса и маркировки, рекомендуем ознакомиться с фото понижающих трансформаторов на просторах Сети.
  • Сделайте следующие расчеты для правильного подбора характеристик мощности. Сложите величину энергии всех устройств, которые будут подключены к устройству и прибавьте еще 20%.

Плюсы и минусы трансформаторов

Данная техника имеет свои преимущества и недостатки. При выборе определенных моделей нужно учитывать все нюансы. Начнем с плюсов:

  • Безопасность человека дома и в условиях промышленности гарантируется данным механизмом, который снижает уровень интенсивности электрического тока до 12 В, тем самым гарантируя сохранение жизни и здоровья.
  • Входящее напряжение имеет не слишком большое значение, поскольку выходящий ток имеет стабильные характеристики.
  • Компактность и миниатюрность коробки.
  • Простота в перемещении и установке.
  • Слабый нагрев корпуса.
  • Аккуратная регуляция напряжения.

Temka-35rus › Блог › Инвертор из 12V в “220V” своими руками из старого ИБП Ippon

Был старый Источник Бесперебойного Питания ИБП с умершим аккумулятором марки ippon back power pro 400
Платы у модельного ряда ippon back power pro 400 — 800 около одного данный способ должен к ним подойти
Модернизация увеличение мощности

Диод D13 нужно заменить на более мощный стандартный 1А поставить как минимум 1,5А.
Для ускоренного заряда увеличения напряжения, дополнительно припаять диод шоттки (меньше потерь падения напряжения) (минимум 1.5А 20В) параллельно D13 через тумблер.

Отключить или отпаять звуковой сигнал чтоб не надоедал

1. Режим GRN (Green power control) при включенном режиме и работе ибп от акб потреблением менее 100Ват отключит ИБП через 5 минут, так как не поймет что у него что то подключено и для защиты АКБ выключится чтоб лишний раз не разряжать можно так же сделать через тумблер.
Для отключения данного режима GRN отпаять ногу резистора R15A

2. Работа Автоматического Регулятора Напряжения (AVR), При отклонении входного напряжения на величину от 10% до 25%

3. STD стандартный режим впаяны оба резистора R5A, R5B

отпаять R5A, чтобы перевести UPS в режим STEP.
Тогда должна будет заработать еще и ступенчатая стабилизация напряжения.

Режим GEN выпаяны оба резистора R5A, R5B

4. выдаваемая мощность (платы заточены под разные нагрузки)
500VA R3B впаян R3C нет
400VA R3B и R3C нет
700VA R3B и R3C нет

Сделано на основе видео Ippon BPP и автоАКБ, подробно о переделках на плате.


Рекомендую посмотреть видео с 22:23
У кого инвертор установлен для системы отопления (котла) для информации посмотреть с 25:49

Комментарии 26

как лучше защитить плату от воздействия влаги?

Покрыть лаком можно несколько слоев, я покрывал платы лаком пластик. ну либо герметичный корпус или еще как то

А кулеры работают во всех режимах? И от сети и от акб?

Привет от АКБ точно работают, от сети точно не помню всегда работают или включаются не особо тестил в этом режиме

Добрый день. А если к такому заводскому ИБП подключить АКБ 60 Ач от автомобиля и нагрузка будет 50 Вт (циркуляционный насос), то требуются какие либо переделки или штатная схема ИБП будет нормально работать?

До 100 ват будет выключается так как будет думать что ничего не подключенно. Надо выпаивать элемент . так же зарядка слабая будет плохо заряжать 60ач, так как большая ёмкость . а так в целом должно работать.

Нашёл ибп Ippon Smart power pro 2000. Написано выходная мощность 2000ВА. Пробовал подключить блоком питания на 12В, лампочки мигнут один раз и всё. Нашёл подробные характеристики, а там оказывается два аккума внутри были по 12В соединены последовательно, соответственно он требует 24В. И вот теперь вопрос, у меня то в машине 12В, можно ли как-то сделать чтоб от 12В работал или другой искать ибп? Заранее спасибо.

Можно ли вообще подключить другой трансформатор к бесперебойнику ?

Если параметры совпадают Напряжение и мощность то да можно. Но как узнать какие были параметры у родного трансформатора этого я не знаю если только где то в сервисной документации написано.

Как подключить другой трансформатор?Родного нет но есть поменьше

Не подскажу сам узнавал у производителя но ответа не получил так такого мол нужно обращаться в сервис где ремонтируют и спрашивать.

Служба технической поддержки IPPON консультирует пользователей только по вопросам, связанным с использованием продукции. Ваш вопрос, отнести к категории пользовательских вопросов не представляется возможным, т.к. он содержит явную сервисную направленность. Информация о совместимости запасных частей здесь не предоставляется.

Если вас интересует ремонт указанной модели ИБП, то для его ремонта рекомендуем обратиться в любой удобный вам авторизованный сервисный центр IPPON.

Как подключить другой трансформатор?Родного нет но есть поменьше

Сверхпростой преобразователь 12-220 Вольт 50Гц 300Ватт

В последнее время очень часто наблюдаю, что все больше и больше людей увлекаются сборкой самодельных инверторов. Поскольку заинтересованы начинающие радиолюбители, я решил вспомнить о схеме, которую опубликовал на нашем сайте год назад. Сегодня я решил переделать схему увеличивая выходную мощность и детально пояснить процесс сборки.

Скажу сразу – это самый простой преобразователь 12-220 с учетом выходной мощности схемы. В качестве задающего генератора задействован старый и добрый мультивибратор. Разумеется, такое решение многим уступает современным высокоточным генераторам на микросхемах, но давайте не забудем, что я стремился максимально упростить схему так, чтобы в итоге получился инвертор, который будет доступен широкой публике. Мультивибратор – не есть плохо, он работает более надежно, чем некоторые микросхемы, не так критичен к входным напряжениям, работает при суровых погодных условиях (вспомним TL494, которую нужно подогревать, при минусовых температурах).

Трансформатор использован готовый, от UPS, габариты сердечника позволяют снять 300 ватт выходной мощности. Трансформатор имеет две первичные обмотки на 7 Вольт (каждое плечо) и сетевую обмотку на 220 Вольт. По идее, подойдут любые трансформаторы от бесперебойников.

Диаметр провода первичной обмотки где-то 2,5мм, как раз то, что нужно.

Основные характеристики схемы

Номинал входного напряжения – 3,5-18 Вольт
Выходное напряжение 220Вольт +/-10%
Частота на выходе – 57 Гц
Форма выходных импульсов – Прямоугольная
Максимальная мощность – 250-300 Ватт.

Недостатки

Долго думал какие у схемы недостатки, на счет КПД, оно на 5-10% ниже аналогичных промышленных устройств.
Схема не имеет никаких защит на входе и на выходе, при КЗ и перегрузке полевые ключи будут перегреваться до тех пор, пока не выйдут из строя.
Из за формы импульсов, трансформатор издает некий шум, но это вполне нормально для таких схем.

Достоинства

Простота, доступность, затраты, 50 Гц на выходе, компактные размеры платы, легкий ремонт, возможность работы в суровых погодных условиях, широкий допуск используемых компонентов – все эти достоинства делают схему универсальной и доступной для самостоятельного повторения.

Китайский инвертор на 250-300 ватт, можно купить где-то за 30-40$, на этот инвертор я потратил 5$ – купил только полевые транзисторы, все остальное найдется на чердаке думаю у каждого.

Элементная база

В обвязке минимальное количество компонентов. Транзисторы IRFZ44 можно с успехом заменить на IRFZ40/46/48 или на более мощные – IRF3205/IRL3705, они не критичны.

Транзисторы мультивибратора TIP41 (КТ819) можно заменить на КТ805, КТ815, КТ817 и т.п.

С успехом подключал к этому инвертору телевизор, пылесос и другие бытовые устройства, работает неплохо, если устройство имеет встроенный импульсный БП, то вы не заметите разницы в работе от сети и от преобразователя, в случае запитки дрели – запускается с неким звуком, но работает довольно хорошо.

Плата была нарисована вручную обыкновенным маникюром

В итоге инвертор понравился на столько, что решил поместить в корпус от компьютерного блока питания.
Реализована также функция REM, для включения схемы нужно всего лишь подключить провод REM на плюсовую шину, тогда поступит питание на генератор и схема начнет работать.


С такой схемы вполне реально снять и большую мощность (500-600 Ватт, может и больше), в дальнейшем попробую увеличить мощность, так, что следующая статья не за горами, до новых встреч.

Ссылка на основную публикацию