Самодельный усилитель для наушников

ʘ — Самодельный усилитель для наушников — просто и быстро

Автор: Nayka
Дата записи

Данная статья рассчитана на начинающих паяльщиков или людей совсем без опыта, так как рассматриваемое устройство довольно простое и не требует какой-то подготовки. Мозгочинам более-менее продвинутым тут, пожалуй, ничего интересного не откроется.


Несмотря на простоту, девайс звучит вполне прилично, а усиливает вообще замечательно, так что если есть желание что-то сделать своими руками, не тратя на это неделю — добро пожаловать.

Зачем

Как многие разработчики, я люблю работать в наушниках. Это создает необходимый барьер между мозгом и разговорами/телефоном/пр. шумами офиса. Не так давно я купил себе относительно неплохие наушники AKG 272 HD, и втыкаю я их в SB Audigy 2. Звуковая картина в целом радует и дарит всяческие наслаждения, но обнаружился один момент — при прослушивании не очень современной музыки, музыки, не затронутой войнами громкости, а также композиций, не страдающих болезненной компрессией и перегейном, громкости звучания недостаточно, даже при вывернутых на максимум ползунках. Вероятно, это связано с чувствительностью используемых динамиков.

Для решения этого вопроса я решил потратить свободный вечер на постройку небольшого усилителя для наушников.
Подобные устройства не редкость, и их довольно много по цене «от 15$», в большинстве своём made in China. Подобная покупка лично мне кажется:

б) труднопрогнозируемой по качеству звука.

Что находится внутри коробочки за 20$ можно узнать только после получения, а на какой чип нанесена маркировка пафосного аудио усилителя — вообще навсегда останется загадкой. Ходить же по локальным магазинам и слушать разные модели — банально лень и жалко времени.

Требования

Каких-то особых требований к устройству я не предъявлял, основные моменты таковы:

  • стерео;
  • внешнее питание, чтобы не заморачиваться с батарейками;
  • умеренные габариты;
  • качество звука выше сносного (учитывая, что прослушивание в наушниках, строить hi-end смысла нет);
  • простота схемы.

Под эти требования подходит тысячекратно проверенная CMoy Pocket Amplifier. В интернете имеется довольно много англоязычных ресурсов с разбором этой схемы и деталей её работы. Русскоязычной информации почему-то не очень много.

Под какие-то исключительные наушники и звуковую карту эта схема, пожалуй, не подойдет, но для нормального «бытового» оборудования вполне годится.

В оригинальной схеме используется относительно качественный (и довольно дорогой) Burr-Brown OPA132, который, помимо прочего, еще и довольно редок в наших краях, но существует целый ряд альтернатив так что можно смело собирать. Других редких или дорогих деталей в схеме не используется.

Подготовка

Схема устройства представлена на рис. 1. Точнее, там схема питания и половина схемы усиления — на один канал.

Рис. 1. Схема питания и одного канала

Как видно, схема предельно проста. Не мудрствуя лукаво, разводим плату как получится, под размеры имеющихся деталей. У меня получилось как показано на рис. 2.

Сразу отмечу — устройство я собирал из того, что было под рукой — резисторы 0.5 Вт 5%, высоковольтная пленка, большие электролиты. Маленькой коробочки под рукой тоже не было, поэтому в размерах я не стеснялся. При желании это всё можно сделать раза в три меньше.


Рис. 2. Эскиз печатной платы

Теперь собираем детали — по сусекам или в магазине.

Полезные советы закупающимся впервые:

  • не забудьте купить панельку для микросхемы в корпусе dip 8 (и, соответственно, саму микросхему покупайте в этом корпусе). Панелька нужна чтобы легко менять микросхемы и подбирать их на слух, ну и перегреть её паяльником не получится;
  • резисторы пойдут 0.25Вт. Чем точнее, тем лучше, но без фанатизма;
  • электролитические конденсаторы брать на напряжение 35В и выше;
  • если будете делать светодиод — не забудьте держатель для него, соответствующего диаметра.

Теперь можно приступать непосредственно к изготовлению.

Изготовление платы

С помощью любого удобного способа нужно изготовить плату. Я использовал ЛУТ, у меня уже есть опыт и отличный боевой утюг:

Рис. 3. Гламурный утюг

Для травления таким способом понадобятся следующие устройства и материалы:

  • Фольгированный текстолит;
  • Ножовка по металлу или бормашинка с отрезным кругом;
  • Лазерный принтер;
  • Глянцевый журнал (лучше без женщин, чтоб не отвлекаться);
  • Утюг, который не жалко;
  • Мелкая наждачная бумага;
  • Ацетон;
  • Тряпки или ватные диски;
  • Хлорное железо;
  • Посудина для травления;
  • Раковина, мыло.

Детальные фотографии процесса приводить не буду. Вкратце процесс таков:

  1. Вырезаем подходящий кусок текстолита. В идеале — обработать получившиеся кромки напильником, так легче равномерно проутюжить потом;
  2. Зачищаем медный слой мелкой наждачкой, промываем водой с мылом, и стараемся больше не касаться его пальцами;
  3. Печатаем лазерным принтером разводку платы на странице из глянцевого журнала;
  4. Вырезаем, прикладываем рисунок на текстолит, накрываем листом белой бумаги, и утюжим горячим утюгом до тех пор, пока бумага не пожелтеет (это индикатор того, что текстолит прогрелся достаточно). Утюжим старательно, равномерно, не забывая углы. Перегревать текстолит не следует — расплывется печать, а также текстолит может деформироваться;
  5. Кладем текстолит (осторожно, он горячий) с приклеившимся рисунком в толстую книгу (ненужную!), и становимся всем весом сверху на пару минут;
  6. Вынимаем, кидаем в ёмкость с горячей водой (я использую глубокую тарелку) минут на 5-10;
  7. Под краном с горячей водой осторожно отслаиваем бумагу, «катышками». В итоге останутся только черные дорожки;
  8. Изучаем. Если получилось совсем плохо — смываем всё ацетоном идем к п. 3. Мелкие дефекты можно выправить — расплывы удалить кончиком ножа, а плохо прилипшие дорожки подправить чем-нибудь — например, взять у подруги лак для ногтей, удобно и прочно;
  9. Разводим раствор хлорного железа в подходящей посудине. Важно! Соблюдайте технику безопасности! Сначала вода, затем железо, и понемногу. Нельзя заливать железо водой — если хлорное железо хорошее, то будет выделяться очень большое количество тепла. Разводим до цвета крепкого чёрного чая;
  10. Побалтывая, ждем пока сойдет медь. Лучше делать это в проветриваемом помещении, в тепле (чем выше температура, тем быстрее скорость реакции);
  11. Вынимаем плату, тщательно промываем и смываем порошок ватным тампоном/диском с помощью ацетона. Всё, плата готова!

После этого можно начинать сверлить отверстия. В итоге у меня получилась вот такая плата (постарайтесь не перетравить, как это вышло у меня. Это некритично в данном конкретном случае, каких-то больших токов тут не протекает, а заряженные частицы и так найдут где двигаться, но всё же):

Рис. 4. Рассверленная плата.

Меры предосторожности:

  • Не используйте хороший утюг — поцарапаете всю подошву и получите нагоняй от его водителя 🙂
  • При работе с хлорным железом соблюдайте меры предосторожности. Избегайте попадания на кожу, вдыхания паров, попадания хлорного железа на металлические предметы.

Далее плату лудим и запаиваем детали:

Рис. 5. Лужение

Да-да, я знаю, что плата получилась плохо (несвежий раствор + забыл вытащить вовремя), контролируйте процесс и постарайтесь не перетравить, медь должна быть гладкой, блестящей и радовать глаз.


Рис 6. Плата в сборе

При сборке я сразу запаял резисторы R5 (обозначения по схеме) для уменьшения шумов, однако после испытаний от них отказался, впаяв перемычки. В остальном от оригинальной схемы не отступал.

Переключатель питания и светодиод я делать не стал, поскольку батарейное питание и экономия энергии для меня неактуальны, и устройство будет работать от внешнего блока питания.

Как видно на рис. 6, я использовал сдвоенный пот ALPHA и изолированное от корпуса гнездо для питания (это важно).

Также использовались 1/4″ разъемы, просто потому, что они у меня в ходу, как и соответствующие штекеры, хотя в данном проекте логичнее использовать разъемы 3.5 мм. Мои экземпляры не изолированы от корпуса, и я даже получил земляную петлю таким образом, однако на уровень шумов это не повлияло заметным на слух образом.

Подключаем, крутим ручку, радуемся результату. Настройки не требуется, разве что попробовать разные типы ОУ и напряжение питания. Теперь можно приниматься за корпус.

Корпус

Под руками оказалась такая вот коробочка:

Рис. 7. Корпус Gainta G0124.

Материал — силумин, обрабатывается крайне легко и приятно. Через десять минут получаем результат:

Рис. 8. Рассверленный корпус

Собственно, на этом всё. Запихиваем разъемы в корпус, обрезаем и перепаиваем избыток проводов, лепим на нижнюю крышку (с внутренней стороны) что-нибудь непроводящее (чтобы не позамыкать на плате всякое), и получаем готовое устройство:

Рис. 9. Готовое устройство

Всего на изготовление от поиска схемы до включения готового устройства в розетку потребовалось около 3-4 часов. По деньгам (с чипом OPA2227PA) выходит около 500 рублей. Учитывая получившийся результат — вполне неплохо. Со своими задачами девайс справляется замечательно, profit цель достигнута.

Усилитель для наушников своими руками

Привет всем любителям самоделок. Все мы любим послушать музыку в наушниках, так как не всегда есть возможность включить ее в колонках, особенно в позднее время суток или в общественном транспорте. Но не всегда само качество звучания бывает достаточно хорошим, одним из признаков этого является встроенный усилитель в устройстве воспроизведения, будь то телефон или же компьютер, ноутбук. В данной статье я расскажу, как сделать усилитель для наушников своими руками, в сборке которого поможет кит-набор, заказать его можно будет по ссылке в конце статьи.

Перед тем, как прочитать статью, предлагаю посмотреть видео, в котором подробно показан весь процесс сборки и проверка усилителя в работе.

Для того, чтобы сделать усилитель для наушников своими руками, понадобится:
* Паяльник, флюс, припой
* Приспособление для пайки “третья рука”
* Бокорезы
* Растворитель 646 или бензин “калоша”
* Блок питания с выходным напряжением 12 В
* Наушники, телефон или иное устройство воспроизведения

Шаг первый.
Данный кит-набор поставляется с двухсторонней печатной платой, ее качество весьма хорошее и имеет металлизированные отверстия. Также для удобства сборки предусмотрена инструкция, где показана схема усилителя и номиналы компонентов для правильной установки на плате.





На этом усилитель для наушников можно считать готовым, осталось его протестировать.

Шаг четвертый.
Для полноценной работы усилителя требуется питание 12 В. В гнездо подключаем блок питания через штекер и вставляем штекер 3.5 мм Jack с двух сторон, один идет в телефон, другой в усилитель, в гнездо с надписью OUT вставляем штекер от наушников и наслаждаемся качественным звучанием. Регулирование громкости осуществляется поворотом ручки переменного резистора.

На этом у меня все, данный кит-набор будет полезен тем, кто хочет усилить звук в своих наушниках, если родного предусилителя устройства не хватает, а также даст немного опыта в сборке радиоконструкторов.

Всем спасибо за внимание и творческих успехов.

Простой «юбилейный» усилитель для наушников В. Кузнецова

Снова здравствуйте, друзья-датагорцы! Уже довольно давно я собрал наушниковый усилитель по схеме камрада Владимира Кузнецова (vol2008), который опубликовал её на нашем форуме, приурочив к своему юбилею.

За прошедшее время усилитель показал себя отлично, используется сейчас совместно с наушниками Sony MDR-ZX770, громкости хватает за глаза, звучание во всём диапазоне очень нравится.
Предлагаю читателям мой вариант печатной платы и общей сборки.

Содержание / Contents

  • 1 Схема усилителя
  • 2 Настройка
  • 3 Корпус усилителя
  • 4 Ссылки
  • 5 Файлы

↑ Схема усилителя

Особенности представленной схемы:
CFA (токовая обратная связь)
Кус = 3;
Диапазон частот от 10 Hz и далеко за пределами звукового диапазона.
Кг «Радио» 1989/12, В. Король. УМЗЧ с компенсацией нелинейности амплитудной характеристики
… Далее, подключив к выходу усилителя эквивалент нагрузки переменным резистором R23 добиться отсутствия постоянного напряжения на нагрузке. Затем, подав на вход усилителя синусоидальный сигнал частотой 5…8 кГц, по подключенному к его выходу осциллографу или вольтметру переменного тока нужно оценить пороговый уровень насыщения усилителя.
После этого рекомендуется уменьшить входной сигнал до уровня 0,7 от насыщения (уровень половинной мощности) и резистором R19 или R20 устранить постоянную составляющую (по показанию) микроамперметра, возникшую от квадратичного детектирования сигнала элементами нелинейности второго порядка.

Эксперимент показал, что такой способ линеаризации усилителя дает достаточно высокую точность.

То есть нам нужно применить этот способ настройки компенсации в реалиях нашей схемы.  В качестве генератора можно использовать звуковую карту + софт, в качестве осциллографа — ПК, ещё потребуется прибор в режиме измерения микроампер, например, Ц4315 — 50 мкА.

Читайте также:  Точечная микросварка своими руками

Питающий трансформатор у меня ТП-20-14, выдаёт 2×9 В переменки. Двуполярный стабилизатор на LM317/337 выдаёт ±7 В, запаса по напряжению почти нет. Нужно будет с этим что-то сделать, так как при пониженном напряжении сети возникает гул — стабилизатор выходит из режима стабилизации.
В остальном всё прекрасно.

↑ Корпус усилителя

В качестве корпуса использован корпус от свитча D-Link. Сбоку просверлены отверстия для вентиляции. В нём разместил БП, ушной усилитель и простой китайский ЦАП. ЦАП запитан от USB, так что работает независимо от усилителя.
Пытался замазать логотип, но это не стоило потраченных усилий.

Передняя панель из текстолита сделана с помощью ЛУТ, способом, описанным у нас на datagor.ru камрадом AlexD. Родная передняя панель нещадно выпилена дремелем. Левый светодиод загорается, когда включается усилитель, правый — когда включён ЦАП, то есть, когда вставлен в компьютер разъём USB.

В качестве селектора входов применён малогабаритный тумблер, в одном положении усилитель подключается к ЦАП с Алиэкспресса на PCM2704 , в другом — к линейному входу. На заднюю панель выведен цифровой выход ЦАПа.


Вы можете заметить на передней панели аж три выхода усилителя, один jack 6.3 и два на 3.5, все они запараллелены — на случай внезапного визита трио аудиофилов.
Справа находится наушниковый выход напрямую с платы ЦАПа.

Если кому-то пригодятся мои платы — рекомендую увеличить расстояния между элементами схемы.

↑ Ссылки

↑ Файлы

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Выражаю благодарность нашему е-журналу и Владимиру (vol2008)!
Спасибо за внимание.

Радиоконструктор “Клон усилителя для наушников Lehmann BCL”

  • Цена: $85+$26 (доставка)
  • Перейти в магазин

Клон Hi-End усилителя для наушников Lehmann Black Cube Linear

Из-за простоты повторения схема этого усилителя класса Hi-End популярна у радиолюбителей. На любом радиолюбительском форуме есть тема про клонирования этого усилителя.

Basic parameters
Frequency range 10Hz-35kHz
Adaptation impedance 8-2kΩ
Distortion 95dB;
LINE OUT-60ohm;
PHONE OUT-5ohm;
Channel separation> 70dB / 10kHz.
Input Interface RCA connector × 1 group
Output Interface: 6.3mm interfaces × 2, RCA Interface × 1 (can be used as preamp)

Internal dimensions: Width 135mm height 48mm depth 240mm

main materials:

Opamp is PHI NE5532.
Power transistor is ST BD139 140.
30W R-core Transformer.
Original ALPS 27 type Potentiometer
US CMC Copper RCA
Ruby main electrolysis, Siemens MKT coupling capacitors, Panasonic decoupling capacitors, resistors made in TaiWan.

Конструктор прислали двумя посылками:

Вложили записку:

Фото печатной платы с двух сторон. Качественная печатная плата:

Трансформатор питания с экранирующей обмоткой:

Схема этого усилителя для наушников в классе А легко ищется в инете:

Все конденсаторы и ОУ — под замену на Wima/Nichichon/Matsushita в фильтр питания/OPA2134 вместо китайского NE5532.

Транзисторы выходного каскада подобрал по коэф. усиления.

Спаял, в корпус поместил. Радиаторы выходных транзисторов, чтобы не болтались, зафиксировал на печатной плате с помощью термоклея. Сигнальные входные и выходные провода — OFC моножила в экранах. RCA разъемы должны быть изолированны от корпуса усилителя.


Для заземления на корпус на плате УНЧ есть спецотверстие:

Собирал конструктор почти полтора года назад. Сейчас установил бы фильтр против электромагнитных помех EMI.
Типа такого «1pcs AC2A3-2 Power Line EMI Filter 250V 50/60Hz 3A Brand new»:

Или возможно в гнездо подключения кабеля «CW2A-10A-T-AC-115V-250V-10A-Panel-Mount-3-Pin-Solder-EMI-Filter»:

Отгородил трансформатор железным экраном… Улучшать конструкцию можно до бесконечности…

Настройка:
Регулятор громкости на минимум. Первое включение лучше делать «через лапочку» (лампа наливания обычная на 100 Вт включается ПОСЛЕДОВАТЕЛЬНО первичной обмотке трансформатора). Замерить постоянное напряжение между выходом усилителя и общим проводом на выходе усилителя на выходных разъемах обеих каналов. Если все ок:
1. лампочка не горит, а только, возможно, на секунду вспыхивает при включении питания,
2. постоянное напряжение меньше 30 мВ.

Можно отключить лампочку, подключать наушники и слушать музыку. Если имеется осциллограф и генератор сигналов, то можно проверить усилитель этими приборами.

На плате установлены переключатели для настройки комфортного уровня усиления.

Защита от постоянного напряжения на выходе
Если «что-то пойдет не так» на наушники может попасть постоянное напряжение. Тогда наушники выйдут из строя. В оригинальной схеме не предусмотрена защита от таких ситуаций. Решил установить такую защиту. На ebay продается такой модуль c «зеленой платой»: «Earphone Protection C1237 (UPC1237) DIY Kit» ebay.com/itm/320743978923

Я покупал за 300 р. Возможно где-то он есть дешевле. Картинка в помощь.
Этот модуль как раз подходит для наших целей:
1. Если его немного «подрезать» со стороны разъема для наушников. Сам разъем для наушников устанавливать не нужно. Дорожки тут расположены удачно — на функциональность защиты не отражаются. После изоляции с обратной стороны платы, модуль отлично помещается над разъемами для наушников основной платы. Я на пластиковых стойках M3 его разместил, просверлив необходимые отверстия. Закрепил пластиковыми гайками и винтами М3.
2. Питание модуля — двухполярное переменное — подключил прямо к выходным клеймам трансформатора для наушников УНЧ.
3. Перед установкой на плату УНЧ — проверить схему. Через несколько секунд после подачи питания, должно щелкнуть реле (наушники подключаются), при подачи постоянного напряжения должно
4. Подсоединил к защите только сигнальные провода — общий провод и так соединен у нас через общий провод питания. Модуль подключил в разрыв дорожек на выходе УНЧ:

Получилось вот так:

Измерения
Нагрузка: резисторы 250 Ом
Vpp=7.2V:





Vpp=1.12V:




Впечатления
Звучит хорошо. Нейтрально. Мне нравиться. Сейчас основной усилитель для наушников. Фона, искажений нет. Звук нейтральный.

Испытывал на наушниках:
Затычки — Sennheiser CX 300-II (16 Ом)
Beyerdynamic DT 990 PRO (250 Ом )
Все ок.

Возможно использовать как предварительный усилитель к усилителю мощности. Так же возможность подключения 2-х пар наушников. Один штекер отсоединяет выход предварительного усилителя, второй не отключает.

Сам конструктор оставил двойственное впечатление — с одной стороны — набор «все в одном». Купил, спаял, все работает, смотрится красиво, слесарные работы сведены к минимуму. Но возможности модификации ограниченны корпусом, трансформатором, схемой. Что для самодельщика не есть хорошо. Высокая цена доставки видимо из-за веса корпуса и трансформатора. На эти элементы бесплатной доставки не бывает.
Прогрев усилителя — минут 20 (транзисторы выходного каскада на рабочую температуру нагреваются). Когда играет музыку — усилок охлаждается. Когда не играет — греется. Особенности класса А.

Как сделать усилитель для наушников своими руками

В общем случае усилитель для наушников (иначе – головных телефонов) — это малогабаритный электронный прибор, способный обеспечить такое звучание динамиков, которое будет сравнимо с воспроизведением высококачественных стационарных стереосистем, в том числе и собранных на лампах. Если по какой-то причине нет возможности приобрести это устройство, его можно изготовить собственноручно, но только обладая соответствующими радиотехническими знаниями и навыками тонких работ. Практические советы по изготовлению усилителя для наушников своими руками – в материале далее.

Зачем нужен усилитель для наушников

Вопрос о том, нужно ли усиливать звук в головных телефонах, волнует многих пользователей наушников. Ведь практически в каждом устройстве, воспроизводящем аудиосигналы (плеер, магнитола, персональный компьютер, смартфон и пр.) имеется встроенный усилитель, оснащенный отдельным выходом для подключения наушников. Мало того, измерение параметров встроенных усилителей, проведенные без подключения нагрузки (на холостом ходу), показывает, что все они отвечают требованиям, необходимым для качественного звучания головных телефонов. Однако все дело в том, что при подключении к воспроизводящему устройству ситуация кардинально меняется, причем не в лучшую сторону. И проблема заключается именно в согласовании этих устройств между собой.

Совет! Поэтому специалисты советуют при подключении головных телефонов к источнику звука обращать особое внимание на рекомендованную изготовителем последнего величину сопротивления нагрузки. Иначе при прослушивании фонограмм возникнут искажения, способные существенно ухудшить качество звучания.

При несоответствии выходного сопротивления звуковоспроизводящего устройства импедансу головных телефонов возможны следующие последствия:

  • высокая чувствительность низкоомных наушников способствует появлению фонового шума;
  • при подключении высокоомных головных телефонов к низкоомному входу источника звука громкость звучания фонограммы может значительно снизиться и т. д.

Избежать означенных проблем можно, если подключать наушники к источнику звука через внешнее усилительное устройство с достаточно большим (свыше 20 кОм) входным сопротивлением. Такой прибор прекрасно взаимодействует с любым встроенным усилителем, поскольку функционирование последнего на высокоомную нагрузку мало чем отличается от его работы на холостом ходу. О сопротивлении наушников подробнее можно узнать из нашей статьи.

На заметку! Встроенный усилитель без труда обеспечивает максимально возможные характеристики воспроизводящего устройства, а вот полностью раскрыть потенциал подключенных головных телефонов — это задача усилителя для наушников.

Простые конструкции усилителей для наушников

Для радиолюбителей отечественная промышленность производит радиоконструктор «Гамма», купив который пользователь без особого труда сможет изготовить неплохой внешний усилитель для наушников своими руками (см. фото и схему на рис.).

Рис.1. Схема усилителя «Гамма»

Рис.2. Усилитель «Гамма» в собранном виде

Он подходит как для низкоомных, так и для высокоомных головных телефонов, собирается на одной микросхеме типа NME5532 или OPA2134 (в зависимости от исполнения), отличается ультралинейной амплитудно-частотной характеристикой (АЧХ) и обеспечивает получение таких технических параметров: диапазона частот (-1 дБ) – 8-400000 Гц, нелинейных искажений — 0,001-0,002 процентов. В комплект поставки входит красочно иллюстрированная пошаговая инструкция, пользуясь которой собрать и настроить усилитель сможет не только опытный, но и начинающий радиолюбитель.

Хороший результат можно получить, собрав аналогичный усилитель для наушников на базе радиоконструктора «Двухканальный усилитель Shareconn Hi-Fi 47» китайского производства. С процессом его сборки можно ознакомиться, посмотрев видеоролик

Простейшие усилители для наушников

Простой усилитель для головных телефонов можно за полчаса собрать на микросхеме TDA2822 или его модификациях. Кроме микросхемы понадобятся также:

  • электролитические конденсаторы 100мкфх16 В — 4 шт.;
  • разъем для подключения наушников;
  • миниатюрный выключатель.

Сборку такого усилителя можно осуществить как с помощью навесного монтажа (см. рисунок), так и на печатной плате, которую придется сделать самостоятельно. Разводка проводников и внешний вид собранной печатной платы показаны на фото. После сборки и проверки работоспособности усилителя его желательно поместить в корпус.

Рис.3. Разводка проводников

Рис.4. Внешний вид платы, сделанной самостоятельно

На такой же микросхеме можно собрать и более сложное устройство (электрическую схему см. на фото), для которого понадобятся такие радиоэлементы, как:

  • микросхема ТДА2822 или ТДА2003;
  • переменные резисторы номиналом 4,7 кОм (2 шт.) и 10 кОм (1 шт.);
  • электролитические и неполярные (пленочные) конденсаторы;
  • разъемы для подключения элементов электропитания и наушников.

Рис.5. Электросхема усилителя на микросхеме TDA2003

Собирают все элементы на печатной плате, которую затем помещают в подходящий по размерам корпус.

Важно! Наличие печатной платы — основное условие для того, чтобы получить высококачественный усилитель.

Аналогичный результат можно получить, собрав типовой двухкаскадный усилитель мощности на 2 транзисторах типа КТ315. Однако для его стабильной работы понадобится:

  • точный подбор напряжений, отдельно подаваемых на базу, коллектор и эмиттер транзисторов;
  • наличие положительного и отрицательного напряжений, подводимых по отдельным линиям;
  • наличие питающего напряжения номинальным значением не менее 5 В, для чего придется специально подбирать резисторы.

Как правило, все самодельные усилители для наушников требуют применения источника питания напряжением порядка 12 В и выше. Однако, если приобрести готовую сборку MAX4410 (см. фото), работающую от источника питания напряжением 1,5-5 В, то можно собрать карманный усилитель, способный работать на батарейках (пальчиковые или литиевые). Максимальная выходная мощность этого устройства — 80 мВт.

Высококачественный усилитель для наушников

Для искушенных радиолюбителей не составит большого труда самостоятельно изготовить усилители, позволяющие получить в головных телефонах звук достаточно высокого качества. Например, используя микросхему ОРА2134Р можно собрать клон профессионального усилителя Lehmann Black Cube Linear. Схема его, приведенная на рисунке, представляет собой усилитель класса А, выходные каскады которого не охвачены отрицательной обратной связью (ООС). ООС охвачен только предусилитель. Конструктивно она размещается в корпусе от CD-ROM с самостоятельно изготовленной передней панелью (см. фото).

Читайте также:  Простой универсальный блок питания своими руками

Рис.8. Конструктивное размещение

Разводка проводников на двусторонней печатной плате выполнена методом ЛУТ (лазерно-утюжная технология).

Изготовление платы методом лазерно-утюжной технологии

ЛУТ — это процесс переноса нарисованной разводки проводников печатной платы на фольгированный материал. Заключается данная процедура в следующем:

  • используя одну из существующих программ для создания печатных плат, осуществляют на экране компьютера разводку будущего элемента;
  • при помощи лазерного принтера распечатывают полученный рисунок на листе глянцевой бумаги;
  • прикладывают лист бумаги с изображением печатной платы к предварительно нагретому фольгированному материалу;
  • горячим утюгом проглаживают бумагу с изображением печатной платы, перенося таким образом рисунок на поверхность фольги;
  • по окончании проглаживания фольгированный материал помещают в ванночку с теплой водой и осторожно, чтобы не повредить нанесенный на него тонер, снимают бумагу.

Внимание! Изображение печатной платы на фольгированном материале будет зеркальным отображением рисунка, полученного на экране компьютера.

Травление платы осуществляется в ванночке с раствором хлорного железа. По окончании этой процедуры полученную плату тщательно промывают. Затем в ней сверлят все необходимые отверстия. А потом, используя флюс с небольшим количеством оловянного припоя, лудят сторону, где будет производиться пайка радиоэлементов.

Далее на печатную плату устанавливают все радиоэлементы, начиная с цепей электропитания. Учитывая, что электрическая схема усилителя потребляет порядка 150 мА на каждое плечо электропитания, выходные транзисторы нужно установить на радиатор, используя для этого слюдяные прокладки и теплопроводную пасту.

Совет! Для получения высокого качества звучания важно подобрать транзисторы с одинаковым коэффициентом передачи, следить, чтобы разброс номинальных величин всех резисторов не превышал 1% и приобрести качественный регулятор громкости.

Нужно знать, что усилители для головных телефонов с достаточно высокими техническими характеристиками можно собрать на базе широко распространенных микросхем LM358N, TDA7050, К157УД1 или их аналогов. Все они обладают минимальным коэффициентом нелинейных искажений и низким уровнем собственных шумов.

Усилители головных телефонов заводского изготовления

В качестве внешнего усилителя для наушников можно купить и использовать специально выпускаемые устройства. Они бывают нескольких видов.

  1. Переносные усилители Lehmann Black Cube Linear весом порядка 1,5 кг предназначены для головных телефонов Hi-End класса. Эти устройства класса А обеспечивают звуковоспроизведение самого высокого качества, сопоставимого со звучанием ламповых усилителей звука, которые выпускает компания Audio Valve. Однако стоимость таких приборов на отечественном рынке может достигать 1000$, что ограничивает их широкое распространение.
  2. Гитарные мини-усилители. Подключив такое портативное устройство к выходу мобильного телефона (смартфона), плеера или электрогитары, можно передавать аудиосигнал улучшенного качества непосредственно на наушники. Кроме функций, которые необходимы музыкантам (эмуляция звука классических кабинетов для электрогитар, эффекты перегруза, реверберации и пр.) гитарные усилители можно использовать в качестве тюнера и/или эквалайзера. Также с их помощью можно переключать каналы и регулировать громкость звука.
  3. Усилители для наушников S.M.S.L SAP-7 размером с кредитную карту обеспечивают неплохие технические характеристики. Они оснащаются миниатюрным аккумулятором емкостью 320 мА, одной зарядки которого хватает на 10 часов непрерывной работы.
  4. USB-ЦАП M-Audio Micro DAC предназначен специально для компьютеров и гарантирует великолепную чистоту звука при подключении к нему головных телефонов. По габаритам устройство соизмеримо с флэш-накопителем.

Резюмируя вышесказанное, нужно отметить, что собственноручное изготовление усилителя для наушников – это занятие кропотливое, длительное, требующее углубленных знаний в электротехнике и усидчивости. Если одного из указанных качеств не хватает, стоит подумать над покупкой промышленного варианта устройства. А если читатель обладает необходимыми навыками и познаниями, ему может быть интересно, как самостоятельно сделать беспроводные наушники или микрофон к головным телефонам.

Самые надежные наушники 2019 года

Наушники JBL T500BT на Яндекс Маркете

Наушники Pioneer SE-MS5T на Яндекс Маркете

Однофазное подключение трехфазного двигателя к электрической сети

Содержание статьи

Асинхронные электродвигатели широко применяются в промышленности благодаря относительной простоте конструкции, хорошим рабочим характеристикам, удобству управления.

Подобные устройства часто попадают в руки домашнего мастера и он, пользуясь знанием основ электротехники, подключает такой электродвигатель для работы от однофазной сети 220 вольт. Чаще всего его используют для наждака, обработки древесины, измельчения зерен и выполнения других простых работ.

Даже на отдельных промышленных станках и механизмах с приводами встречаются образцы различных двигателей, способных работать от одной или трех фаз.

Чаще всего у них используется конденсаторный запуск, как наиболее простой и приемлемый, хотя это не единственный способ, известный большинству грамотных электриков.

Принцип работы трехфазного двигателя

Промышленные асинхронные электрические устройства систем 0,4 кВ выпускаются с тремя обмотками статора. К ним прикладываются напряжения, сдвинутые по углу на 120 градусов и вызывающие токи аналогичной формы.

Для запуска электродвигателя токи направляют таким образом, чтобы они создали суммарное вращающееся электромагнитное поле, оптимально воздействующее на ротор.

Конструкция статора, используемая для этих целей, представлена:

2. магнитопроводом сердечника с уложенными в него тремя обмотками;

3. клеммными выводами.

В обычном исполнении изолированные провода обмоток собраны по схеме звезды за счет установки перемычек между винтами клемм. Кроме этого способа еще существует подключение, называемое треугольником.

В обоих случаях обмоткам назначено направление: начало и конец, связанное со способом монтажа — навивки при изготовлении.

Обмотки нумеруются арабскими цифрами 1, 2, 3. Их концы обозначаются К1, К2, К3, а начала — Н1, Н2, Н3. У отдельных типов двигателей подобный способ маркировки может быть изменен, например, С1, С2, С3 и С4, С5, С6 или другими символами либо вообще не применяться.

Правильно нанесенная маркировка упрощает подключение проводов питания. При создании на обмотках симметричной схемы расположения напряжений, обеспечивается создание номинальных токов, осуществляющих оптимальную работу электродвигателя. В этом случае их форма в обмотках полностью соответствует подводимому напряжению, повторяет его без каких-либо искажений.

Естественно, следует понимать, что это чисто теоретическое заявление, ибо на практике токи преодолевают различные сопротивления, незначительно отклоняются.

Наглядному восприятию происходящих процессов помогает изображение векторных величин на комплексной плоскости. Для трехфазного двигателя токи в обмотках, создаваемые приложенным симметричным напряжением, изображаются следующим образом.

При питании электродвигателя системой напряжений с тремя равномерно разнесенными по углу и одинаковыми по величине векторами в обмотках протекают такие же симметричные токи.

Каждый из них образует электромагнитное поле, сила индукции которого наводит в обмотке ротора собственное магнитное поле. В результате сложного взаимодействия трех полей статора с полем ротора создается вращательное движение последнего, обеспечивается создание максимальной механической мощности, вращающей ротор.

Принципы подключения однофазного напряжения к трехфазному двигателю

Для полноценного подключения к трем одинаковым статорным обмоткам, разнесенных по углу на 120 градусов, два вектора напряжения отсутствуют, имеется только один из них.

Можно подать его всего в одну обмотку и заставить ротор вращаться. Но, эффективно использовать такой двигатель не получится. Он будет обладать очень малой выходной мощностью на валу.

Поэтому возникает задача подключения этой фазы таким образом, чтобы она в разных обмотках создавала симметричную систему токов. Другими словами, нужен преобразователь напряжения однофазной сети в трехфазную. Подобная задача решается разными методами.

Если отбросить сложные схемы современных инверторных установок, то можно реализовать следующие распространенные способы:

1. использование конденсаторного запуска;

2. применение дросселей, индуктивных сопротивлений;

3. создание различных направлений токов в обмотках;

4. комбинированный способ с выравниванием сопротивлений фаз для образования одинаковых амплитуд у токов.

Кратко разберем эти принципы.

Отклонение тока при прохождении через емкость

Наиболее широко практикуется конденсаторный запуск, позволяющий отклонять ток в одной из обмоток за счет подключения емкостного сопротивления, когда создается опережение тока от вектора приложенного напряжения на 90 градусов.

В качестве конденсаторов обычно используются металлобумажные конструкции серий МБГО, МБГП, КБГ и подобные. Электролиты не приспособлены для пропускания переменного тока, быстро взрываются, а схемы, предусматривающие их использование, отличаются сложностью, низкой надежностью.

В этой схеме ток отличается по углу от номинальной величины. Он отклоняется всего на 90 градусов, не доходя на 30 о (120-90=30).

Отклонение тока при прохождении через индуктивность

Ситуация аналогична предыдущей. Только здесь ток отстает от напряжения на те же 90 градусов, а тридцати недобирает. Кроме того, конструкция дросселя не такая простая, как у конденсатора. Его надо рассчитать, собрать, настроить под индивидуальные условия. Этот способ не получил широкого распространения.

При использовании конденсаторов или дросселей токи в обмотках электродвигателя не доходят до требуемого угла на тридцатиградусный сектор, показанный красным цветом на картинке, что уже создает повышенные потери энергии. Но, с ними приходится мириться.

Они мешают созданию равномерного распределения сил индукции, создают тормозящий эффект. Точно оценить его влияние сложно, но при простом подходе деления углов получается (30/120=1/4) потеря 25%. Однако, можно ли так считать?

Отклонение тока подачей напряжения обратной полярности

В схеме звезды принято фазный провод напряжения подключать на вход обмотки, а нулевой — на ее конец.

Если в две разнесенные на 120 о фазы подать одно и то же напряжение, но разделить их, а во второй изменить полярность, то токи сдвинутся по углу относительно друг друга. Они станут формировать электромагнитные поля разного направления, влияющего на вырабатываемую мощность.

Только при этом способе по углу получается отклонение токов на небольшое значение — 30 о .

Этим методом пользуются в отдельных случаях.

Способы комплексного применения конденсаторов, индуктивностей, изменения полярности обмоток

Первые три перечисленных метода не позволяют поодиночке создавать оптимально симметричное отклонение токов в обмотках. Всегда возникает их перекос по углу относительно стационарной схемы, предусмотренной для трехфазного полноценного питания. За счет этого происходит образование противодействующих моментов, тормозящих раскрутку, снижающих КПД.

Поэтому исследователи провели многочисленные эксперименты, основанные на разных сочетаниях этих способов с целью создания преобразователя, обеспечивающего наибольшую эффективность работы трехфазного двигателя. Эти схемы с подробным разбором электротехнических процессов приводятся в специальной учебной литературе. Их изучение повышает уровень теоретических знаний, но в своем большинстве они редко применяются на практике.

Хорошая картина распределения токов создается в схеме, когда:

1. на одну обмотку подается фаза прямого включения;

2. на вторую и третью обмотки напряжение подключают через конденсатор и дроссель, соответственно;

3. внутри схемы преобразователя осуществляется выравнивание амплитуд токов за счет подбора реактивных сопротивлений с компенсацией дисбаланса активными резисторами.

Хочется обратись внимание на третий пункт, которому многие электрики не придают значения. Просто посмотрите на следующую картинку и сделайте вывод о возможности равномерного вращения ротора при симметричном приложении к нему сил одинаковых и разных по величине.

Комплексный метод позволяет создать довольно сложную схему. Она очень редко применяется на практике. Один из вариантов ее реализации для электродвигателя мощностью в 1кВт показан ниже.

Для изготовления преобразователя необходимо создать непростой дроссель. Это требует затрат времени и материальных средств.

Также трудности возникнут при поиске резистора R1, который будет работать с токами, превышающими 3 ампера. Он должен:

обладать мощностью, превышающей 700 ватт;

надежно изолироваться от токоведущих частей.

Существует еще несколько технических сложностей, которые придется преодолеть для создания такого преобразователя трехфазного напряжения. Однако, он довольно универсален, позволяет подключать двигатели с мощностью до 2,5 киловатт, обеспечивает их устойчивую работу.

Итак, технический вопрос подключения трехфазного асинхронного двигателя в однофазную сеть решен посредством создания сложной схемы преобразователя. Но, он не нашел практического применения по одной простой причине, от которой невозможно избавиться — завышенное потребление электроэнергии самим преобразователем.

Мощность, затрачиваемая на создание схемы трехфазных напряжений подобной конструкцией, превышает минимум в полтора раза потребности самого электродвигателя. При этом суммарные нагрузки, создаваемые на подводящую питание электропроводку, сравнимы с работой старых сварочных аппаратов.

Электрический счетчик, к радости продавцов электроэнергии, очень быстро начинает перечислять деньги из кошелька домашнего мастера на счет энергоснабжающей организации, а это хозяевам совсем не нравится. В итоге сложное техническое решение создания хорошего преобразователя напряжения оказалось ненужным для практического применения в домашнем хозяйстве, да и на промышленных предприятиях тоже.

Читайте также:  Простой онлайн источник бесперебойного питания (ИБП) (схема)

Допонительно

Схемы включения трехфазных асинхронных двигателей для работы от однофазных сетей:

Схемы а — е применяются в том случае, когда фазы обмотки статора жестко соединены в звезду или треугольник и у двигателя имеется только три выводных конца. Наилучшими из этих схем следует считать схемы в и е. При включении двигателя по этим схемам в случае правильного подбора емкости конденсатора он обладает вполне удовлетворительными пусковыми и рабочими свойствами.

Схемы ж и з применяются в случае, когда у двигателя имеется шесть выходных концов — начала и концы всех фаз. При таком соединении обмоток двигатель практически не отличается от обычного однофазного асинхронного двигателя с пусковым сопротивлением или емкостью.

Обмотки двух его фаз, соединенные последовательно, образуют рабочую обмотку, а обмотка третьей фазы — пусковую обмотку. Рабочая обмотка, как и в обычном однофазном двигателе с пусковым сопротивлением или емкостью, занимает 2/3 пазов статора, пусковая обмотка — 1/3 пазов.

При правильном выборе активного сопротивления или емкости этот двигатель может иметь примерно такие же пусковые и рабочие свойства, как и специально рассчитанный однофазный асинхронный двигатель с пусковой обмоткой. (Ю. М. Юферов. Электрические двигатели автоматических устройств)

4 заключительных вывода

1. Технически использовать однофазное подключение трехфазного двигателя можно. Для этого создано много разнообразных схем с различной элементной базой.

2. Практически применять этот способ для длительной работы приводов в промышленных станках и механизмах нецелесообразно из-за больших потерь энергии потребления, создаваемых посторонними процессами, ведущими к низкому КПД системы, повышению материальных затрат.

3. В домашних условиях схему можно использовать для выполнения кратковременных работ на неответственных механизмах. Длительно работать подобные устройства могут, но при этом оплата электроэнергии значительно возрастает, а мощность работающего привода не обеспечивается.

4. Для эффективной эксплуатации асинхронного двигателя лучше использовать полноценную трехфазную сеть питания. Если такой возможности нет, то лучше отказаться от этой затеи и приобрести специальный однофазный электродвигатель соответствующей мощности.

Включение 3-х фазного двигателя в однофазную сеть, от теории к практике

В домашнем хозяйстве иногда возникает необходимость запустить 3х фазный асинхронный электродвигатель (АД). При наличии 3х фазной сети это не составляет трудностей. При отсутствии 3х фазной сети двигатель можно запустить и от однофазной сети, добавив в схему конденсаторы.

Конструктивно АД состоит из неподвижной части – статора, и подвижной – ротора. На статоре в пазах укладываются обмотки. Обмотка статора представляет собой трёхфазную обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл. градусов. Концы и начала обмоток выводятся в соединительную коробку. Обмотки образуют пары полюсов. От числа пар полюсов зависит номинальная частота вращения ротора двигателя. Большинство общепромышленных двигателей имеют 1-3 пары полюсов, реже 4. АД с большим числом пар полюсов имеют низкий КПД, больше габариты, поэтому используются редко. Чем больше пар полюсов, тем меньше частота вращение ротора двигателя. Общепромышленые АД выпускаются с рядом стандартных скоростей вращения ротора: 300, 1000, 1500, 3000 об/мин.

Ротор АД представляет собой вал, на котором находится короткозамкнутая обмотка. В АД малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями отливают короткозамкнутые кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности обмотку выполняют из медных стержней, концы которых соединяют с короткозамкнутыми кольцами при помощи сварки.

При включении АД в 3ф сеть по обмоткам по очереди в разный момент времени начинает идти ток. В один период времени ток проходит по полюсу фазы А, в другой по полюсу фазы В, в третий по полюсу фасы С. Проходя через полюса обмоток, ток поочередно создает вращающее магнитное поле, которое взаимодействует с обмоткой ротора и заставляет его вращаться, как бы подталкивая его в разных плоскостях в разный момент времени.

Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой. Действовать на ротор такой момент будет в одной плоскости. Такого момента не достаточно, чтоб сдвинуть и вращать ротор. Чтобы создать сдвиг фазы тока полюса, относительно питающей фазы, применяют фазосдвигающие конденсаторы рис.1.


Рис.1

Конденсаторы можно применять любых типов, кроме электролитических. Хорошо подходят конденсаторы типа МБГО, МБГ4, К75-12, К78-17. Некоторые данные конденсаторов приведены в таблице 1.

Если необходимо набрать определенную емкость, то конденсаторы следует соединить параллельно.

Основные электрические характеристики АД приводятся в паспорте рис.2.


Рис.2

Из паспорта видно, что двигатель трехфазный, мощностью 0,25 кВт, 1370 об/мин, есть возможность менять схему соединения обмоток. Схема соединения обмоток «треугольник» при напряжении 220В, «звезда», при напряжении 380В ,соответственно ток 2,0/1,16А.

Схема соединения «звезда» изображена на рис.3. При таком включении к обмоткам электродвигателя между точками АВ (линейное напряжение Uл) подводится напряжение в раза больше напряжения между точками АО (фазное напряжение Uф).


Рис.3 Схема подключения «звезда».

Таким образом линейное напряжение в раза больше фазного напряжения: . При этом фазный ток Iф равен линейному току Iл.

Рассмотрим схему соединения «треугольник» рис. 4:


Рис.4 Схема соединения «треугольник»

При таком соединении линейное напряжение UЛ равное фазному напряжению Uф., а ток в линии Iл в раза больше фазного тока Iф: .

Таким образом если АД рассчитан на напряжение 220/380 В, то для его подключения к фазному напряжению 220 В используется схема соединения обмоток статора «треугольник». А для подключения к линейному напряжению 380 В – соединение «звезда».

Для пуска данного АД от однофазной сети напряжением 220В нам следует включить обмотки по схеме «треугольник», рис.5.


Рис.5 Схема соединения обмоток ЭД по схеме «треугольник»

Схема соединение обмоток в выводной коробке показана на рис. 6


Рис.6 Соединение в выводной коробке ЭД по схеме «треугольник»

Чтобы подключить электродвигатель по схеме «звезда» необходимо две фазные обмотки подключить непосредственно в однофазную сеть, а третью – через рабочий конденсатор Ср к любому из проводов сети рис. 6.

Соединение в выводной коробке для схемы «звезда» изображено на рис. 7.


Рис.7 Схема соединения обмоток ЭД по схеме «звезда»

Схема соединение обмоток в выводной коробке показана на рис. 8


Рис.8 Соединение в выводной коробке ЭД по схеме «звезда»

Емкость рабочего конденсатора Ср для данных схем рассчитывается по формуле:
,
где Iн– номинальный ток, Uн– номинальное рабочее напряжение.

В нашем случае, для включения по схеме «треугольник» емкость рабочего конденсатора Cр = 25 мкФ.

Рабочее напряжение конденсатора должно быть в 1.15 раз больше номинального напряжения питающей сети.

Для пуска АД не большой мощности обычно достаточно рабочего конденсатора, но при мощности более 1.5 кВт двигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применить еще пусковой конденсатор Сп . Емкость пускового конденсатора должна быть в 2.5-3 раза больше емкости рабочего конденсатора.

Схема соединения обмоток электродвигателя, соединенных по схеме «треугольник» с применением пусковых конденсаторов Сп представлена на рис. 9.


Рис.9 Схема соединения обмоток ЭД по схеме «треугольник» с применением пусковых конденсатов

Схема соединения обмоток двигателя «звезда» с применением пусковых конденсаторов представлена на рис. 10.


Рис.10 Схема соединения обмоток ЭД по схеме «звезда» с применением пусковых конденсаторов.

Пусковые конденсаторы Сп подключают параллельно рабочим конденсаторам при помощи кнопки КН на время 2-3 с. При этом скорость вращения ротора электродвигателя должна достигнуть 0.7…0.8 от номинальной скорости вращения.

Для запуска АД с применением пусковых конденсаторов удобно применять кнопку рис.11.


Рис.11

Конструктивно кнопка представляет собой трехполюсный выключатель, одна пара контактов которого замыкается, когда кнопка нажата. При отпускании контакты размыкаются, а остальная пара контактов остается включенной, до тех пор, пока не будет нажата кнопка стоп. Средняя пара контактов выполняет функцию кнопки КН (рис.9, рис.10), через которую подключают пусковые конденсаторы, две остальных пары работают как выключатель.

Может оказаться так, что в соединительной коробке электродвигателя концы фазных обмоток выполнены внутри двигателя. Тогда АД можно подключить только по схемам рис.7, рис. 10, в зависимости от мощности.

Существует еще схема соединения обмоток статора трехфазного электродвигателя – неполная звезда рис. 12. Выполнение соединения по данной схеме возможно, если начала и концы фазных обмоток статора выведены в соединительную коробку.


Рис.12

Подключать ЭД по такой схеме целесообразно, когда необходимо создать пусковой момент, превышающий номинальный. Такая необходимость возникает в приводах механизмов с тяжелыми условиями пуска, при пуске механизмов под нагрузкой. Следует отметить, что результирующий ток в питающих проводах превышает номинальный ток на 70-75%. Это необходимо учитывать при выборе сечения провода для подключения электродвигателя

Емкость рабочего конденсатора Ср для схемы рис. 12 рассчитывается по формуле:
.

Емкости пусковых конденсаторов должны быть в 2.5-3 раза больше емкости Ср. Рабочее напряжение конденсаторов в обеих схемах должно быть в 2.2 раза больше номинального напряжения.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого следует взять любой из 6 наружных выводов электродвигателя и присоединить его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1 ,а его конец – С4. Аналогично найдем начало и конец второй обмотки и обозначим их С2 и С5, а начало и конец третьей – С3 и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигатели согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим электродвигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную часто­ту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке следует поменять местами выводы С1 и С4. Если это не помогает, концы первой обмотки необходимо вернуть в первоначальное положение и теперь уже выводы С2 и С5 поменяйте местами. То же самоё сделайте; в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов обмоток строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора АД, включенного в однофазную сеть по схеме «треугольник» (см. рис.5), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения АД, включенного в однофазную сеть по схеме «звезда» (см. рис.7), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний, шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, и смазать их.

Ссылка на основную публикацию