Светодиодный светильник из галогенного своими руками

Уютный ночной светильник из галогеновой лампочки

Сейчас, в современном мире, огромную популярность получили светодиодные лампочки. Они обладают хорошей эффективностью, малыми размерами, не сильно нагреваются, а цены на них в последнее время заметно снизились. Все эти факторы обеспечили светодиодным лампочкам уверенный рост популярности, сейчас они стоят во многих современных квартирах. Производители всячески нахваливают свою светодиодную продукцию, показывая её преимущества и маскируя недостатки. Поэтому мало кто знает, что у светодиодной лампочки, в отличие от классической галогенной лампы или лампы накаливая, спектр свечения сильно отличается от солнечного. Поставьте рядом две лампочки – накаливая и светодиодную. Многие люди согласятся с тем, что мягкий свет лампы накаливания куда более приятен глазу, чем жёсткий свет светодиодов. Мягкий, жёлтый свет раскалённой спирали создаёт в квартире уют, тёплую приятную атмосферу.

В этой статье рассмотрим процесс создания самодельного светильника, который будет наполнять спальню тёплым уютным светом. Во многих квартирах выключатель света находится далеко от кровати, на противоположной стене, поэтому добраться до него в кромешной тьме порой бывает сложно. Если расположить выключатель ночника около изголовья кровати, а саму лампочку закрепить где-нибудь в углу под потолком, можно будет включать подсветку не вставая с кровати.

Для изготовления светильника понадобится:
• Лампочка на 12 вольт достаточной для освещения мощности. Если поставить лампочку небольшой мощности, то она создаст в комнате завораживающую полутьму, которая смотрится весьма необычно. Лучше всего использовать лампочку именно на 12 вольт, т.к. это напряжение легко коммутировать и оно не представляет опасности для человека. Кроме того, не стоит забывать, что в комплекте с лампочкой должен быть держатель или патрон. Я использую галогеновую лампочку на 12 вольт.

• Блок питания на 12 вольт. Блок питания должен иметь запас по мощности, иначе возможен его выход из строя. Если мощность лампочки, допустим, 20 ватт, то мощность блока питания должна составлять 30 ватт и выше.

• Соединительные провода. Сечение также лучше взять с запасом, исходя из мощности лампочки.
Это основные составляющие, которые нужны для создания светильника, не говоря о паяльнике, припое, флюсе и умении пользоваться этими вещами.

В простейшем случае схема соединения лампочки и выключателя будет выглядеть так, как показано на картинке ниже. Выключатель включается в разрыв питания лампочки.

Стоит заранее подумать о том, где будет располагаться блок питания, лампочка, выключатель. Если выключатель и лампочка находятся на большом расстоянии друг от друга, то целесообразно использовать ключ на полевом транзисторе, схема которого подробно описана в другой статье. Я поступил именно так, использовал транзистор в качестве коммутирующего элемента, тогда провода до самого выключателя можно брать тонкие, на них не будет никакой нагрузки. В этом случае к пункту «материалы» стоит также записать транзистор и пару резисторов.
Схема транзисторного ключа показана на картинке ниже.

Нагрузкой, в нашем случае, выступает сама лампочка. Затвор будет управляться тем же напряжением, которым питается лампочка, включая и выключая тумблер, мы будем либо подавать напряжение на затвор, либо, наоборот, снимать с него напряжение.

Можно обойтись простейшей схемой, состоящей из лампочки и выключателя, но если есть желание использовать транзисторный ключ, то в первую очередь нужно припаять резисторы к транзистору, сделать это проще всего навесным монтажом. К стоку транзистора также припаивается один из контактов держателя лампочки.


После этого припаиваем провод, который соединит электронный ключ с выключателем у изголовья кровати. Я использовал дешёвый кабель ADSL с двумя жилами (красная и зелёная). Одина его жила припаивается к затвору транзистора через резистор, а другая к плюсу питания. Также с плюсом питания соединяется второй контакт держателя лампочки.


Транзистор в процессе долгой работы может слегка нагреться, поэтому для надёжности его не помешает посадить на небольшой радиатор. В общем виде соединение всех проводов наглядно показано на картинке ниже. Соединения желательно заизолировать изолентой или термоусадочной трубкой.

В качестве выключателя можно поставить обычный тумблер, кнопку с фиксацией. Если выключать коммутирует не транзистор, а непосредственно лампочку, то стоит позаботится о том, чтобы он выдержал ток лампочки.

После пайки всех проводов и проверки правильности монтажа можно приступать с испытаниям.

Лампочка должна светить в полную силу, если она светиться тускло, значит где-то плохое соединение, или сечение проводов выбрано слишком маленькое. Если всё работает исправно, остаётся лишь повесить лампочку в подходящее место комнаты, провести провода так, чтобы они не бросались в глаза, установить выключатель около кровати. Лампочку желательно накрыть красивым плафоном. Я просто закрепил лампочку в держателе на куске ДВП, выглядит не так красиво, но со своей задачей лампочка справляется.

В темноте не слишком яркое свечение галогеновой лампочки выглядит весьма завораживающее, создаётся приятная романтичная атмосфера, располагающая ко сну. Жаль, что фотография не передаёт всей прелести тёплого тусклого света.

Простая светодиодная лампа своими руками

Внимание! Данная конструкция не имеет гальванической развязки от высоковольтной сети переменного тока. Строго соблюдайте технику безопасности. При повторении конструкции Вы всё делаете на свой страх и риск. Автор не несёт никакой ответственности за Ваши действия.

В статье рассмотрена конструкция светодиодной лампы с питанием от сети переменного тока с напряжением до 240 В и частотой 50/60 Гц. Данная лампа мне служит уже более двух лет и я хочу поделится с Вами этой конструкцией. Лампа имеет очень простую схему ограничения тока, что даёт возможность повторения конструкции начинающим радиолюбителям. Она имеет небольшую мощность и может применяться в качестве ночника или для подсветки помещения, где не нужна большая яркость свечения, но важен такой фактор, как низкое энергопотребление и долгий срок службы. Её можно повесить в подъезде или на лестничной площадке и не переживать о выключении или высоком расходе электричества – срок её службы практически ограничен сроком службы применённых светодиодов, так как данная лампа не имеет импульсного преобразователя, которые часто выходят из строя быстрее самих светодиодов, а радиоэлементы здесь подобраны таким образом, что не превышаются номинальные напряжения и рабочие токи как конденсаторов с диодами, так и самих светодиодов даже при максимальном допустимом напряжении и частоты в питающей электросети.

Лампа имеет следующие характеристики:

Напряжение питания:до 240 В
Частота питающей сети:50/60 Гц
Потребляемая мощность:не более 1,8 Вт
Количество светодиодов:9 штук
Общее число кристаллов:27 единиц
Тип преобразования:с гасящим конденсатором

В лампе использованы трёхкристалльные светодиоды тёплого белого свечения типа smd5050:

При протекании номинального тока 20 мА на одном кристалле светодиода падает напряжение порядка 3,3 В. Это основные параметры для расчёта гасящего конденсатора для питания лампы.

Кристаллы всех девяти светодиодов соединены последовательно друг с другом и таким образом через каждый кристалл протекает одинаковый ток. Этим достигается одинаковое свечение и максимальный срок службы светодиодов и следовательно всей лампы. Схема соединения светодиодов показана на рисунке:

После спаивания получается вот такая светодиодная матрица:

Вот так это выглядит с лицевой стороны:

Представляю Вам принципиальную схему данной светодиодной лампы:

В лампе используется двухполупериодный выпрямитель на диодах D1-D4. Резистор R1 ограничивает бросок тока во время включения лампы. Конденсатор C2 является фильтрующим и сглаживает пульсации тока через светодиодную матрицу. Для данного случая его ёмкость в микрофарадах примерно можно рассчитать по формуле:

где I это ток через светодиодную матрицу в миллиамперах и U – падение напряжения на ней в вольтах. Не стоит гнаться за слишком большой ёмкостью этого конденсатора, так как токогасящий конденсатор играет роль ограничителя тока, а подключённая светодиодная матрица является стабилизатором напряжения.

В данном случае можно использовать конденсатор ёмкостью 2,2-4,7 мкФ. Параллельно ему установленный резистор R3 обеспечивает полную разрядку этого конденсатора после выключения питания. Резистор R2 играет ту же роль для токогасящего конденсатора C1. Теперь главный вопрос – как рассчитать ёмкость гасящего конденсатора? В интернете есть много формул и онлайн калькуляторов для этого, но все они занижали результат и давали более низкую ёмкость, что подтвердилось на практике. При использовании формул с различных сайтов и после применения онлайн калькуляторов в большинстве случаев получилась ёмкость 0,22 мкФ. При установке же конденсатора с данной ёмкостью и при замере протекающего через светодиодную матрицу тока был получен результат 12 мА при напряжении сети 240 В и частоты 50 Гц:

Тогда я пошёл более длинным путём и сначала рассчитал необходимое гасящее сопротивление, а затем вывел ёмкость гасящего конденсатора. За исходные данные мы имеем:

  • Напряжение питающей сети: 220 В. Возьмём максимально возможное – 240 В.
  • Частоту сети я взял в 60 Гц. При частоте в 50 Гц через матрицу будет протекать меньший ток и лампа будет светить менее ярче, но, зато будет запас.
  • Напряжение, падающее на светодиодной матрице составит 27*3,3=89,1 В, так как у нас 27 последовательно включённых светодиодных кристаллов и на каждом из них будет падать примерно 3,3 В. Округлим это значение до 90.
  • При максимальной частоте 60 Гц и напряжении в сети 240 В, протекающий через матрицу ток, не должен превышать 20 мА.

В расчётах используются действующие значения токов и напряжений. По закону Ома гасящее сопротивление должно составлять:

где Uc – напряжение в сети (В)

Um – напряжение на светодиодной матрице (В)

Im – ток через матрицу (A).

Так как в качестве гасящего сопротивления мы используем конденсатор, то Xc = R и по известной формуле для ёмкостного сопротивления:

вычисляем необходимую ёмкость конденсатора:

где f – частота питающей сети (Гц)

Xc – необходимое ёмкостное сопротивление (Ом)

Напоминаю, что полученное в данном случае значение ёмкости конденсатора справедливо для частоты питающей сети 60 Гц. Для частоты же 50 Гц по расчётам получается значение 0,42 мкФ. Для проверки справедливости я временно поставил два параллельно соединённых конденсатора по 0,22 мкФ с получившейся суммарной ёмкостью в 0,44 мкФ и при замере протекающего через светодиодную матрицу тока было зафиксировано значение в 21 мА:

Читайте также:  Датчик тока своими руками

Но для меня была важна долговечность и универсальность и по расчёту на частоту 60 Гц с результатом необходимой ёмкости в 0,35 мкФ я взял близкий номинал с ёмкостью в 0,33 мкФ. Вам так же советую брать конденсатор немного меньшей ёмкости, чем расчётная, что бы не превышать допустимый ток используемых светодиодов.

Далее подставив формулу для расчёта сопротивления в формулу для определения ёмкости и сократив всё выражение я вывел универсальную формулу в которую, подставив исходные значения, можно вычислить необходимую ёмкость конденсатора для любого числа светодиодов в лампе и любого питающего напряжения:

Окончательная формула принимает следующий вид:

Где C – ёмкость гасящего конденсатора (мкФ)

Id – допустимый номинальный ток применяемого в лампе светодиода (мА)

f – частота питающей сети (Гц)

Uc – напряжение питающей сети (В)

n – количество используемых светодиодов

Ud – падение напряжения на одном светодиоде (В)

Может быть кому то будет лень производить эти расчёты, но по этой формуле можно определить ёмкость для любой светодиодной лампы с любым числом последовательно соединённых светодиодов любого цвета. Можно например сделать лампу из 16 красных светодиодов подставляя в формулу соответствующее красным светодиодам падение напряжения. Главное придерживаться разумных пределов, не превышать количество светодиодов с общим напряжением на матрице до напряжения питающей сети и не использовать слишком мощные светодиоды. Таким образом можно изготовить лампу с мощностью до 5-7 Вт. В противном случае может понадобиться конденсатор слишком большой ёмкости и могут возникнуть сильные пульсации тока.

Вернёмся к моей лампе и на фотографии ниже показаны радиоэлементы, которые я использовал:

У меня не нашлось конденсатора ёмкостью 0,33 мкФ и я поставил параллельно включённых два конденсатора с ёмкостью 0,22 и 0,1 мкФ. С такой ёмкостью протекающий через матрицу ток, будет немного меньше расчётного. Фильтрующий конденсатор в моём случае на напряжение 250 В, но я настоятельно рекомендую использовать конденсатор на напряжение от 400 В. Хотя падение напряжения на моей светодиодной матрице и не превышает 90 В, но в случае обрыва или перегорания хоты бы одного из светодиодов напряжение на фильтрующем конденсаторе достигнет амплитудного значения, а это более 330 В при действующем напряжении в питающей сети 240 В. (Ua = 1,4U)

В качестве корпуса я использовал часть компактной энергосберегающей люминесцентной лампы вытащив из неё электронную начинку:

Плату я выполнил навесным монтажом и она с лёгкостью поместилась в указанный корпус:

Светодиодную матрицу я приклеил двойным скотчем к круглому куску гетинакса, который привинтил к корпусу двумя винтами с гайками:

Так же я сделал небольшой рефлектор, вырезав его из жестяной банки:

Я провёл реальные измерения при напряжении в питающей сети 240 В и частоте 50 Гц:

Постоянный ток через светодиодную матрицу принял значение 16 мА, что не превышает номинального тока используемых светодиодов:

Так же я разработал печатную плату под радиоэлементы в программе Sprint-Layout. Все детали поместились на площади 30Х30 мм. Вид данной печатной платы Вы можете видеть на рисунках:

Я предоставил эту печатную плату в форматах PDF, Gerber и Sprint-Layout. Вы свободно можете скачать указанные файлы. Хотя на схеме и указаны диоды КД105, но так как в настоящее время они являются редкостью, то печатная плата разведена под диоды 1N4007. Так же можно использовать другие выпрямительные диоды средней мощности на напряжение от 600 В и на ток в 1,5-2 раза больший тока потребления светодиодной матрицы. Дам рекомендацию на счёт сборки этой матрицы. Все светодиоды лицевой стороной я временно приклеил к малярному скотчу и спаял все выводы согласно схеме, после чего готовую матрицу со стороны выводов приклеил на двусторонний скотч и снял бумажный малярный скотч с лицевой стороны. Если у Вас будет возможность, я рекомендую расположить светодиоды на большем расстоянии друг от друга, так как они будут выделять тепло и от близкого расположения могут перегреваться и быстро деградировать.

Лично у меня эта лампа светит по семь часов в день уже третий год и пока не было никаких проблем. К статье прилагаю также таблицу Exsel с формулой для расчёта. В ней просто нужно подставить исходные значения и в результате получите необходимою ёмкость гасящего конденсатора. Всем ярких и долговечных лампочек. Оставляйте отзывы и делитесь статьёй, так как в интернете много неправильных формул и калькуляторов дающих неверный результат. Здесь же всё проверено опытом и подтверждено временем и реальными измерениями.


Как своими руками сделать светодиодный светильник

Led-освещение распространено и в частных. и в общественных помещения.

Однако покупка и установка оборудования для него обходится достаточно дорого.

Поэтому рассмотрим, как сделать светильник из светодиодов и подручных материалов своими руками, какие устройства, расходники, инструменты для этого потребуются, и какие варианты приборов могут при этом получиться.

Как подобрать светодиодные лампы для светильника

При создании светодиодных светильников применяют два вида led-лампочек по мощности:

  1. До полуватта. Их главные особенности – минимальный нагрев и возможность задать осветительному прибору любую форму, благодаря большому количеству точек. Недостаток – их монтаж весьма трудоемок, если учесть, что паять и соединять нужно своими руками.
  2. От 1 до 5 Вт. Большая мощность диодов позволяет существенно снизить их количество в устройстве, что уменьшает трудозатраты. Однако эффективная эксплуатация осветительного прибора на их основе невозможна без правильного подбора радиатора и рассеивателя света.

Изготовление led-светильников возможно также на основе светодиодных лент. Мощность освещения, цветовая подборка и плотность расположения лампочек в полосе определяется условиями эксплуатации и личными предпочтениями того, кто будет собирать их своими руками. В ширину стандартно они достигают 8-10 мм, а в длину – до 5 метров (именно такую протяженность имеют в продаваемых катушках). Питание осуществляется от источника постоянного тока с напряжением около 12 вольт и выше. Для подключения их от бытовой сети потребуется соответствующий блок питания. Также их можно собрать и на батарейках.

Расчет и принцип работы драйвера с гасящим конденсатором

Чтобы оснастить уже имеющиеся люстры и прочие светильники в квартире дешевым источником светодиодного света можно применить схему драйвера с гасящим конденсатором.

Главная его особенность – низкое потребление энергии. Собирая блок своими руками, каждый убедится, что он достаточно прост и в нем нет ничего лишнего, в том числе стабилизатора. Применяемые диоды не выделяют много тепла, поэтому в устройстве также отсутствует радиатор.

Единственный минус такой схемы – прямое подключение к сети 220В. Это значит, что если будут постоянные перебои напряжения, светильник станет постоянно мигать. Чтобы собрать подобный драйвер, потребуется подготовить исходные материалы:

  1. Макетная плата.
  2. Одно-двухваттные резисторы.
  3. Предохранители.
  4. Конденсаторы 47 mF на 500 В.
  5. Диодные мосты типа КЦ405А.
  6. Конденсаторы пленочные на 600 вольт (можно взять больше).

Если светодиодный светильник изготавливается для потолочной люстры под стандартный патрон, в качестве базы можно взять цоколь от перегоревшей экономной люминесцентной лампы. Для этого нужно своими руками, лучше вне помещения, аккуратно отсоединить лампу.

Схема

Работы схемы конденсатора, изготовленного своими руками, подчиняется следующему алгоритму:

  1. Резистор (обозначаемый на схеме R1) снижает скачки в сети до момента стабилизации схемы. На это уходит порядка одной секунды. Его параметры – сопротивление 50-150 Ом, мощность – 2 Вт.
  2. Резистор (на иллюстрации R2) поддерживает работу конденсатора-балласта – разряжает его, когда питание отключается. На практике это полезно для того, чтобы в случае необходимости проведения ремонта своими руками, мастер не подвергался действию электричества. Помимо этого, он препятствует образованию токового броска при не совмещении первой полуволны переменного сетевого тока с полярностью конденсатора.
  3. С1 непосредственно гасящий конденсатор. Это главный элемент схемы светодиодного светильника на основе ленты или ламп. Его функция – фильтрация тока. С его помощью (варьируя параметр мощности) можно задать любое значение силы тока в цепи. Так, для диодов, приведенных в качестве основы (см. выше) его значение не долго превышать 20 мА при пиковом напряжении.
  4. Дальше по схеме включается диодный мост.
  5. С2 (конденсатор электролитического типа) предотвращает ламповое мерцание. Кроме того, благодаря медленному разряжению электролита светильник затухает не немедленно, а постепенно.

Важно! Led-элементы светодиодной ленты не обладают эффектом инертности. Поэтому при включении и выключении глаз человека может замечать изменение стабильности освещения только при частоте в 50 Гц. Однако если посмотреть на светильник через камеру смартфона, можно сразу обнаружить его качество. Как правило, дешевые китайские диоды сразу выдают себя мерцанием, незаметным невооруженным глазом.

Основы расчета

Чтобы правильно рассчитать конденсатор, необходимо воспользоваться следующей формулой: I = 200*C*(1.41*U cети – U led): I – ток цепи (А); цифра «200» – постоянная, полученная умножением частоты тока 50 Гц на «4»; значение «1.41» – еще одна постоянная; С – емкость гасящего конденсатора, выраженная в фарадах; U cети – напряжение в используемой сети, обычно 220В; U led – общее падение напряжение на светодиодной полосе или отдельных диодов, например если каждый элемент имеет по 3,3В, то это значение нужно умножить на общее их количество и получится величина U led.

Правило подбора тока цепи (I) достаточно просто. Необходимо подобрать емкость гасящего конденсатора и количество диодов с заданным напряжением так, чтобы искомое значение тока цепи не превышало указанно в параметрах led-элементов. Задавая величину I можно устанавливать яркость свечения. Период времени службы диодов находится от нее в обратной зависимости.

На изображении приведена иллюстрация схемы типичного драйвера с гасящим конденсатором.

Интересно! Как вариант в качестве источника питания может использоваться аккумулятор. Светильник на батарейках можно подключать без драйвера. При этом при расчете его мощности нужно учитывать суммарное падение напряжение всех светодиодных элементов.

Какие материалы можно использовать

В ходе изготовления самодельных светильников пригодны любые материалы, сочетающиеся со светодиодными лентами и лампочками. Корпус можно изготовить как своими руками, так и взять за основу ранее использовавшийся прибор. При этом обязательно нужно учесть теплоотдачу led-элементов. Без правильно подобранного радиатора они быстро испортятся.

Читайте также:  Функциональный футляр-шкатулка-удлиннитель для паяльника своими руками

Для диодов большой мощности потребуется теплопроводящий материал. Например, это может быть алюминиевый профиль, труба, конус и прочие металлические предметы. Для таких элементов, как светодиоды 5 мм «соломенная шляпа» с углом распределения светового потока в сто двадцать градусов можно использовать любой материал – пластик, бумагу, дерево, картон – так как они не нагреваются.

Как сделать светильник своими руками: подробные инструкции

Теперь рассмотрим самые популярные варианты изготовления светильников на основе светодиодных элементов. Разберем подробно, как своими руками сделать их корпус, и какие материалы лучше использовать для настольных и настенных ламп, а также декоративных приборов освещения и некоторых других моделей.

Настольный

Для изготовления своими руками настольного светильника в первую очередь потребуется модернизировать уже имеющий прибор освещения. Для этого нужно:

  1. Извлечь родной патрон.
  2. В качестве базы взять цоколь от вышеописанной экономной лампочки и поместить в него, соединяя по схеме, драйвер с гасящим конденсатором.
  3. В качестве корпуса для светодиодных элементов можно использовать, к примеру, колпачок от дезодоранта подходящего размера.
  4. По всей его площади просверливаются/пробиваются отверстия подходящего диаметра под 5-миллиметровые диоды (всего около 50-60).
  5. К остатку цоколя от экономной лампочки корпус прикрепляется на небольшие саморезы к круглому пластиковому основанию диаметром как у колпачка. При этом сама основа крепится на небольшие уголки-подиумы также на крепежные элементы.
  6. После фиксации и сбора светильник просто вкручивается вместо обычной лампы накаливания в плафон для настольника.

Совет! Используя вышеприведенную технологию, можно своими руками изготовить светильники для обычных подвесных люстр, а также плафонов, вывешиваемых для освещения подсобных помещений, гаражах, бань, подвалов. Вместо обычных ламп накаливания или «экономок» в них будут применены светодиодные самоделки.

Настенный

Настенный светодиодный светильник может применяться в различных помещениях – ванной и санузле, на кухне и в детской, гостиной и прихожей, коридоре. Процедура изготовления его в форме круглого плафона своими руками выглядит следующим образом:

  1. Прежде всего необходимо подобрать основание под монтаж диодов. Оно должно быть соразмерно рассеивателю. Например, можно вырезать дно от пластикового строительного ведра.
  2. Рассчитав необходимое количество диодов (в среднем 100-120), необходимо строго по разметке равномерно проделать отверстия.
  3. На обратной стороне основания закрепляется драйвер, при необходимости несколько штук.
  4. Основание с диодами и драйверами обязательно фиксируется к базе плафона на саморезы. Для этого по середине необходимо установить пластиковый или металлический подиум.
  5. Собранный прибор закрепляется на стену и закрывается рассеивателем.

Такой светильник с некоторой модернизацией можно приспособить не только для настенного, но и потолочного монтажа.

Декоративный

Светодиодные ленты представлены на рынке в достаточно широком разнообразии – по мощности, световой температуре, цветовым оттенкам и прочих параметрам. Самоделка на их основе не представляет ничего сложно, по крайней мере, сделать из них плафон для украшения намного проще, чем светильник с драйвером по вышеописанной схеме.

При этом оформление его корпуса и рассеивателя будет ограничиваться лишь рамками фантазии самого изготовителя. К светодиодной ленте потребуется блок питания, а также модуль управления, если планируется варьировать характеристики ее работы по цвету, световому потоку, интенсивности, времени.

Основные правила сборки самодельных led-светильников

Чтобы сделать рабочий светильник на основе светодиодов, необходимо убедиться как в грамотности его схемы, так и в правильности подбора его элементов:

  1. Сборку диодов осуществлять строго по приведенной схеме. При неправильном подключении возможен взрыв!
  2. Качество спайки компонентов должны быть на высоком уровне. В противном случае возможно разъединение контактов и поломка светильника.
  3. Для точного расчета всех параметров, в том числе падения напряжения, необходимо проводить предварительные замеры точными приборами, мультиметром.
  4. Чтобы устранить эффект голубоватой подсветки (раздражающих глаза) белых диодов, необходимо на каждые 10 led-элементов монтировать 3-4 красных.

Интересно! Приведенная выше схема изготовления светильника своими руками достаточно проста, эффективна и экономна. Однако она подключена напрямую к сети с напряжением в 220В, что не исключает поражения электрическим током, и потому требует соблюдения правил безопасности как с любым другим бытовым электроприбором.

Основные выводы

Изготовить светильник своими руками можно с применением подручных средств и недорогих радиотоваров. Также для этого потребуется непосредственно светодиодные элементы – лампы или ленты. Они могут быть как маломощными, так и сильными. При выборе материала для корпуса нужно исходить из параметров их теплоотдачи. Чтобы подключить такой прибор в сеть без блока питания, потребуется изготовить драйвер с гасящим конденсатором, предварительно рассчитав его по формуле.

С помощью предложенной технологии можно изготовить светильники любой формы и параметров для установки их в качестве основного или декоративного источника освещения. Монтировать своими руками их можно на потолок и стены в плафоны, в люстры и настольные лампы, а также в любую другую специально изготовленную художественную конструкцию.

Мощный светодиодный светильник своими руками — разработка, установка

Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.

Пошаговая разработка светодиодного светильника

Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.

Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.

Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.

При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.

Видео: Светодиодный светильник в домашних условиях

Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.

Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.

Упрощённая схема светильника

  1. Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
  2. Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
  3. Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
  4. Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.

На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.

Перегоревшая лампочка

Лампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном . Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.

Фото: патрон лампы

Вставляем в него резистор на 100 Oм и два конденсатора по 220 нФ напряжением 400 В.

Фото: резисторы и транзистор

Теперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.

Фото: пайка выпрямителя

В качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.

Фото: клей и патрон

После этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.

Фото: светодиоды на доске

Очень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.

Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.

Соединение светодиодов

Также без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.

Готовая мини лампа

Далее дело за малым: припаиваем резистор на 100 Ом, он может подсоединяться к любой из плат, и изолируем клеем контакты.

Читайте также:  Использование мощных светодиодов

Резистор и лампа

Все готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.

Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.

Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.

Фото: лампа в действии

Светильник в офис

Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.

Для начала нужно определить количество светодиодов и номинальную мощность.

После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.

Схема: подключение ламп

Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.

Короткие провода светодиодов

Дальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком

. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.

Добавляем конденсатор

Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.

Видео: как правильно сделать светодиодный светильник своими руками

При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.

Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.

3 способа замены галогеновых ламп на светодиодные в люстре

Модернизация люстры путем замены светодиодных ламп вместо галогенных, наиболее простая и экономически обоснованная процедура.

Что на что меняем

Галогенная (галогеновая?) лампа. Галогенки действуют по принципу ламп накаливания. В них свет излучает раскаленная вольфрамовая нить. Внутренняя полость колбы заполняется специальным химическим составом, предотвращающим быстрый износ спирали и выхода изделия из строя.

В быту питаются от 12-24 вольтовых источников тока. Используются совместно с электронными преобразователями (трансформаторами), понижающими напряжение до необходимой величины.

Светодиодные лампы. Это сборки из массива полупроводниковых элементов, способных светиться под действием электрического тока. Все излучатели соединяются последовательно-параллельно между с собой и рассчитаны на определенные параметры питания.

Светодиоды функционируют только от постоянного тока. Для того, что подогнать стандартную бытовую сеть под заданные значения, используют специальные электронные устройства – драйверы.

Светодиодная лампа с цоколем g4

Технические аспекты установки светодиодов вместо галогенок

Процесс монтажа в люстру светодиодных ламп вместо галогенных, сводится к изменению схемы питания. Приведем несколько решений.

Вариант 1

Полная замена источников питания. Это самый затратный вариант модернизации, но и максимально надежный.

Из корпуса светильника удаляют трансформаторы и вставляют преобразователь постоянного тока для LED. Его мощность должна превышать совокупную мощность всех ламп в 1,5 раза. В больших люстрах могут быть несколько контуров, каждый из которых — отдельный режим работы (люстры с дистанционным управлением). В таком случае понадобится отдельный драйвер для каждого контура.

Установка led драйверов вместо трансформаторов

Также, если одним устройством обойтись не получается, можно 1 контур разделить на группы и запитать каждую отдельным драйвером. При этом, вход всех блоков подключается параллельно: фазные провода собираются в один узел, нулевые – в другой.

Удобно применять для подключения промежуточные клеммники, но они должны обеспечивать надежный электрический контакт. Хорошо зарекомендовали себя соеденители компании WAGO.

Если это ваш вариант, в конце статьи будет видео, где подробно показано как менять галогенки на светодиоды в люстрах с несколькими контурами.

Вариант 2

Самый простой. Замена галогенных ламп в люстре на светодиодные со встроенными выпрямителями, работающими от того же напряжения, что и в первоначальном варианте.

Здесь, вообще, не нужно будет проводить каких-либо работ – достаточно будет поставить диоды с таким же цоколем на место галогенок. Узнать, что перед вами требуемый тип светодиодных ламп можно по маркировке. Буквенное обозначение AC/DC.

Недостаток метода – недостаточная освещенность из-за падения напряжения на внутреннем мосту. Яркость можем повысить за счет увеличения мощности.

Обозначение светодиодных лампочек со встроенным выпрямителем

Вариант 3

Выбираются модели LED-ламп, работающие от 220 вольт. Их подключение производится параллельно, от бытовой сети. Требуется извлечь понижающие трансформаторы и напрямую питать лампы Других вспомогательных устройств не нужно.

Важно! Если люстра работала на 12-вольтовых галогенках, а ставим леды с номинальным напряжением 220V (со встроенным драйвером), то следует быть готовым к замене соединительных кабелей в люстре. Если они не рассчитаны на такой ток в лучшем случае мы их просто спалим, в худшем — утроим пожар.

Переделка люстры с галогенными лампами на светодиодные со встроенным драйвером

Тонкости замены галогеновых ламп на светодиодные

Что важно учесть при замене галогеновых ламп на светодиодные:

  1. Цоколь. Выбирать следует LED с таким же цоколем, что в оригинальной люстре.
  2. Проблемой может быть низкое энергопотребление светодиодных сборок. Отдельные модели электронных трансформаторов снабжены функцией автоматического отключения при малой нагрузке. С диодами люстра может мигать или не работать вообще. Решается удалением трансформатора с заменой на led драйвер.
  3. Направленность света LED ламп. Угол распространения светового потока у галогенок 360°, у светодиодов — зависит от конструкции. Выбирайте модели с линзами широкого рассеивания, желательно с матированным рассеивателем, иначе получите неравномерное освещение.
  4. Помните про конструкцию плафона при выборе светодиодных лампочек. Led лампа может не поместиться в прежнее посадочное место или будет выступать и выглядеть неэстетично.
  5. Цветовая температура светодиодных ламп. Большинство LED светят холодным белым светом (4000К — 6000К) их нежелательно ставить в детские. Для гостиной или рабочего кабинета — отличный вариант.

Целью переоснащения люстр служит экономия электричества. Стоит понимать, что модернизация одного источника света окупится не раньше чем через два-три месяца (для комнат с постоянным использованием освещения). Эффективней провести перемонтаж сразу нескольких участков жилого помещения.

Выбирая полупроводниковые светильники не нужно экономить. Скупой платит дважды. Дешевое изделие, выпущенное неизвестным производителем чаще низкого качества и быстро приходит в негодность.

Переделываем галогеновый прожектор под светодиоды

  • Цена: $0,34*3 + $ 1,18 = $ 2,2
  • Перейти в магазин

Разгребая на чердаке хлам стратегические запасы наткнулся на несколько галогеновых прожекторов, отправленных на свалку истории в связи с повышением тарифов на электроэнергию. Тут-то и родилась идея переделать их под светодиоды.
Внимание! В обзоре не будет измерений, анализов и прочих умных слов. Только инструкция по модернизации светильников.

При более внимательном изучении, оказалось что корпуса их, изготовлены из алюминиевого сплава, а не из пластика, как может показаться на первый взгляд, это облегчило задачу и решило вопрос герметизации радиатора (радиатором будет служить сам корпус).

Вскрываем прожектор, откручиваем рефлектор и вынимаем его:


Удаляем держатель лампы:

для крепления светодиодов использую кусок алюминиевого уголка, который через слой термопасты закрепляю саморезами к корпусу прожектора:


В качестве источника света используем три 10-ти ваттных СОВ-сборки купленных здесь
http://ru.aliexpress.com/item/100PCS-Free-shipping-10W-LED-10W-800-900LM-LED-Bulb-IC-SMD-Lamp-Light-Daylight-warm/2039078995.html

А в качестве источника питания — драйвер на 12Вт отсюда http://ru.aliexpress.com/item/12W-led-driver-12W-lamp-driver-5pcs-lot-AC85-265V-input-for-E27-GU10-LED-bulb/1881709953.html

Я решил использовать три последовательно собранных диодных сборки при мощности драйвера 12Вт, чтобы работали они в щадящем режиме и не перегревались. Паяются контакты проще простого.
За неимением теплопроводящего клея, пришлось крепить диоды к уголку маленькими шурупиками, предварительно промазав термопастой.

Драйвер разместил в клемной коробке, предварительно припаяв провода.

Осталось только подрезать рефлектор таким образом, чтобы он не прикрывал светодиоды и собрать прожектор.

Вот и все.
В итоге мы получили прожектор за 2,5 доллара.

При работе в помещении температура диодов не поднимается выше 45 градусов даже через несколько часов.
Герметичность корпуса от такой модернизации практически не пострадала, а яркость свечения, субъективно, равна яркости 100-ваттного галогенового прожектора.

По поводу продавцов комплектующих — обе части пришли в течении месяца в желтых конвертах. Проблем с продавцами не возникало.

PS:

100 Ватт галоген


герой обзора

Фото без вспышки в темном саду. Пасмурная ночь (только что).

Ссылка на основную публикацию