Самодельный настольный светильник “BMW”

20 идей для создания светильников своими руками

В этой статье мы вас вдохновим различными идеями для создания светильников своими руками. И главное, предложим источники света, которые легко и удобно оформить в самые необычные дизайнерские решения. Вам не нужно будет думать, где найти светодиоды, платформу для наклеивания их, паять провода и делать другие технические вещи. Мы уже подумали за вас и освобождаем вам время для фантазий и светлых идей оформления светильника!

Своими руками из дерева, металла, ткани, бумаги, пластика или ниток реализуют невероятные замыслы. Пример создания светильника из пластмассовых стаканчиков:

Светильник напольный своими руками из бумажных стаканчиков и гирлянды.

Настольный светодиодный светильник своими руками из картона. Внутри спрятана led лампочка.

Потолочный светильник своими руками под старину.

Светильник для потолка своими руками из дерева и металлических терок.

Настенный светодиодный светильник своими руками из бумаги (оригами).

Настенный LED светильник из фанеры.

Применение декоративных самодельных светильников

Самодельные светильники отлично выполняют роль декоративного освещения. Их редко используют для основного освещения. Для изготовления используются материалы плохо пропускающие свет, а источники света ограничены размером или мощностью. Чтобы избежать повреждения конструкции, в качестве источника света рекомендуется использовать слабо нагревающиеся светодиодные лампы или ленты, которые, в отличии от ламп накаливания, угрозы возгорания не несут.

Самодельные светильники в качестве основного освещения

В качестве основного освещения самодельные светильники все чаще используются благодаря технологичным, мощным и безопасным источникам света.

Самодельный светильник на основе светодиодного светильника Армстронг 595х595.

Светодиодный светильник для основного освещения.

Лампа потолочная своими руками из бумаги. светодиодные матрицы OPPLE безопасны как источник света в данной конструкции, так как не нагревается.

Как сделать своими руками светодиодный светильник?

Например, тонкие (5 мм) светодиодные светильники 600х600 (система армстронг) можно взять в качестве основы.

Светодиодный самодельный светильник на основе светодиодной панели Армстронг 600х600.

Мощной альтернативой стали светодиодные модули для изготовления светильников своими руками из подручных средств. Множество размеров и форм позволяет создавать напольные, настенные, потолочные или подвесные светильники необычного дизайна и высокой мощности. Используется для ремонта старого светильника или для разработки своей собственной уникальной световой конструкции.

Светодиодные модули OPPLE Led Module для ремонта и замены старой лампы или создания своими руками нового светильника.

Модуль из светодиодов с регулировкой температуры света и пультом дистанционного управления.

Драйвер и вся необходимая электроника уже встроены в светодиодные матрицы OPPLE. В отличие от светодиодных лент, матрица (модуль) подключаются напрямую к сети 220 вольт. Светодиодный модуль OPPLE компактен в размерах, имеет продуманное охлаждение, а каждый светодиод на нём оснащен собственной линзой для наиболее равномерного распределения света.

Линза на каждом светодиоде для наиболее равномерного распределения света.

Маленький модуль на 12 Вт (аналог 95 Вт) подходит для декоративных самодельных светильников:

Декоративный светодиодный светильник из дерева под старину.

Светильник подвесной своими руками из бумаги (оригами кусудама).

Для самых ярких решений разработан модуль на 80 Вт (аналог 600 Вт) с пультом дистанционного управления, регулировкой яркости (встроенный диммер) и изменяемой температурой света от теплого света (3000 К) до холодного (6000 К).

Как сделать из подручных материалов яркий светодиодный светильник с пультом управления, регулировкой яркости и температуры света от теплого до холодного.

Оригинальные светильники стало возможно сделать технологичными и еще более необычными благодаря различным световым настройкам. Теперь можно играть температурой света (от желтого до белого) и регулировать яркость света.

Важно, что у светодиодных модулей OPPLE продуманная система охлаждения и они почти не нагреваются. Это даёт возможность создавать дизайнерские решения из любимых материалов: светильники из дерева, подвесные светильники из бумаги, настенные светильники из фанеры, напольные из подручных материалов. Теперь как никогда просто создавать своими руками самодельные LED светильники.

Настольная лампа (ночник) из дерева (фанеры) своими руками.

Самодельный светодиодный (ЛЕД) светильник из бумаги.

Потолочный подвесной светильник в стиле лофт сделанный своими руками.

Накладная лампа самодельная из ткани.

Идея самодельного LED светильника из перьев.

Как сделать кованый светильник своими руками.

Выберите свой светодиодный модуль для самодельного светильника

Когда готов самодельный светильник, матрицы OPPLE из светодиодов прекрасно дополнят результат творчества высокотехнологичным акцентом. Маломощные светодиодные модули для декоративных светильников или яркие с пультом дистанционного управления подойдут для больших светильников из группы основного освещения. Используйте их для создания оригинальных как потолочных, так и настенных или настольных ламп и светильников. Один пульт может управлять сразу несколькими матрицами OPPLE. Светодиодные матрицы подключаются напрямую в сеть 220 В и дополнительных доработок не требуют.

Светодиодные светильники своими руками. Выпуск 3

В этой статье мы рассмотрим примеры изготовления самодельных светодиодных светильников для различных нужд.

1. Простейший светильник для бытовых нужд.

Для начала стоит определиться с тем, какие светодиоды лучше использовать. Если выбирать между мощными и маломощными – первые лучше с точки зрения трудоемкости. Чтобы заменить один мощный 1 Вт светодиод, понадобится 15-20 маломощных 5 мм или smd светодиодов. Соответственно, пайки с маломощными гораздо больше. Остановимся на мощных. Обычно они делятся на два вида – выводные и поверхностного монтажа. Для облегчения жизни лучше использовать выводные . Мощность светодиода лучше выбирать не более 1 Вт.

Также нам понадобится драйвер тока, чтобы светодиоды получали необходимое напряжение и долго служили.
Кроме того, для продолжительной работы светодиода (особенно для мощного)необходимрадиатор. Для его изготовления лучше всего подходит алюминий. На каждый одноваттный светодиод нужен кусок алюминия 50х50 мм, толщиной около 1 мм. Кусок может быть меньше, если его изогнуть. Если Вы возьмете кусок 25х25 мм и толщиной 5 мм – нужного эффекта не получите. Чтобы рассеивать тепло, нужна площадь, а не толщина.

Рассмотрим модель простейшего светильника. Нам понадобятся : три светодиода 1 Вт , драйвер 3х1 Вт , двухсторонний теплопроводящий скотч , радиатор (например, кусок П-образного профиля толщиной 1 мм и длиной 6-8 см).

Теплопроводящий скотч может проводить тепло. Поэтому обычный двусторонний скотч из не подойдет. Отрезаем полоску скотча шириной 6-7 мм.

Обезжириваем радиатор и донышки светодиодов. Ацетон для этого использовать нежелательно – пластиковая линза светодиода может помутнеть.

Наклеиваем скотч на радиатор. Затем размечаем радиатор, чтобы установить светодиоды ровно.

Устанавливаем светодиоды на скотч. При этом соблюдаем полярность – все светодиоды должны быть развернуты одинаково так, чтобы “плюс” одного светодиода смотрел на “минус” соседнего. Слегка прижимаем их для лучшего контакта. После этого наносим олово на выводы светодиодов для облегчения дальнейшей пайки. Если у вас есть опасение, что скотч при этом может прогореть – просто приподнимите выводы светодиодов так, чтобы они не касались скотча. Корпус светодиода при этом нужно придерживать пальцем, чтобы от скотча не оторвался. Впрочем, можно отогнуть выводы заранее.

Соединяем светодиоды между собой. Для этого вполне достаточно жилки от любого многожильного провода.

Рекомендуется оставить включенным светильник на 2-3 часа, после чего приложить палец к задней стенке радиатора. Если он нагрелся не чрезмерно, все в порядке.

Простейшая модель светильника готова. Теперь Вы можете вставить его в любой подходящий корпус. Разумеется, можно сделать и более мощный светильник, только диодов нужно по больше и драйвер помощнее, а принцип останется тем же. Подобная методика подойдет как для изготовления одиночного светильника, так и для мелкосерийного производства.

2. Люстра на основе светодиодов.

Нам понадобятся:
1. Цоколь от сгоревшей энергосберегающей лампы.
2. Два захвата (чтобы подключиться к светодиоду);
3. Мощный десятиваттный светодиод, цвет по вашему выбору;
4. Два маленьких винта;
5. Один десяти ваттный светодиодный драйвер;
6. Термопаста;
7. Радиатор;
8. Термоусадочная трубка (или изолирующая лента);
9. провода сечением 2 мм.

Для начала необходимо разобрать старую или сгоревшую энергосберегающую лампу. Важно проявлять осторожность и не повредить стеклянную колбу. Иначе из нее выйдет очень вредный для здоровья ртутный газ.

Нам нужна только часть корпуса с цоколем. Обрежем повода от платы идущие к цоколю и припаяем свои, идущие от драйвера светодиода, изолируем термоусадочными трубками.

Паяльником проделаем пару отверстий для проволоки, которая будет удерживать всю конструкцию.

Далее в центре радиатора сверлим два отверстия для крепления светодиода и нарезаем резьбу. Сажаем светодиод. Для этого смазываем обе поверхности термопастой и плотно прикручиваем светодиод к радиатору.

Читайте также:  Светильник в стиле Лофт своими руками

Далее,используем клеммы, обжимаем, подключаем к светодиоду соблюдая полярность. Проверяем. Не рекомендуется смотреть на включенный светодиод. Сила света очень велика и может нанести вред Вашим глазам. Если все работает – собираем светильник в единое целое.

Светодиод очень яркий и бросает резкие тени. Вы можете сделать свет более гладким и мягким, используя самодельный рассеиватель. В качестве рассеивателя можно использовать множество различных материалов. Самый простой – вырежем из двухлитровой пластиковой бутылки дно, обработаем наждачной бумагой со всех сторон, что бы придать полную непрозрачность прямому свету. Делаем четыре отверстия и проволокой крепим ее к радиатору.

3. Домашняя светодиодная лампа.

В качестве источника света используем светодиоды Cree MX6 Q5 мощностью 3 Вт и светоотдачей 278 лм. Светодиод будет размещен на радиаторе размером 5х5 см, снятом с процессора старой материнской платы.

Для простоты будем использовать импульсный источник вместе с электронным адаптером, который даст необходимое напряжение и ток для питания светодиодов. Для этой цели в нашем случае было выбрано зарядное устройства нерабочего мобильного телефона имеющее, по заявлению производителя, выходное напряжение 5 В и ток 420 мА.

Для предохранения от внешних воздействий вся электронная часть будет помещена в патрон от старой лампы.

В соответствии с указаниями производителя, светодиоды Cree MX6 Q5 могут работать на максимальном токе 1 А при напряжении 4,1 В. По логике, для нормальной работы нам понадобится резистор 1 Ом, чтобы понизить напряжение примерно на один вольт тех пяти, которые дает зарядное устройство, чтобы получить искомые 4,1 В и это только при том, если зарядка выдает ток максимальной силы в 1 А.Однако, как позже выяснилось, зарядное устройство с конструктивным ограничением по силе тока в 0,6 А без проблем работает. Тестируя таким же образом зарядки для других мобильных телефонов, было обнаружено, что все они имеют ограничение на питание током, сила которого на 20-50% выше той, что указана производителем.Смысл этого заключается в том, что любой производитель будет стремиться разработать блок питания так, чтобы он не перегревался, даже если питаемое устройство будет повреждено или произойдет короткое замыкание, и самый простой способ в этом случае — ограничение тока.

Таким образом, мы имеем источник постоянного тока ограниченный 0,6 А, питаемый от переменного тока 230 В, сделанный фабричным методом и имеющий небольшие размеры. При этом во время работы он лишь незначительно нагревается.

Переходим к сборке. Для начала необходимо вскрыть блок питания для того, чтобы извлечь детали, которые будут вставлены в корпус новой лампы. Так как большинство блоков питания соединено пайкой, вскрываем блок ножовкой.

Для того, чтобы закрепить плату в корпусе лампы, в нашем случае использовался санитарный силикон. Силикон был выбран за его сопротивляемостью высоким температурам.

Перед тем, как закрыть лампу, крепим к крышке (используя болты) радиатор, к которому и был прикреплен светодиод.

Лампа готова. Потребляемая мощность составляет чуть менее 2,5 Вт, световой поток – 190 лм, что идеально подходит для экономичной, долговечной и прочной настольной лампы.

4. Светильник в коридоре.

Для освещения светодиодными светильниками прихожей мы использовал два светодиода Cree MX6 Q5, каждый из которых обладает мощностью 3 Вт и светоотдачей 278 лм и питается от старого блока питания от мобильного телефона Samsung. И хотя производителем в спецификации указана сила тока в 0,7 А, после замеров былоустановлена, что она ограничена 0,75 А.

Схема изготовления основы светильника аналогична предыдущему варианту. Вся внешняя конструкция собрана при помощи текстильной липучки, клея и пластиковых шайб от материнских плат.

Общее потребление этой конструкции составляет около 6 Вт при световом потоке 460 лм.

5. Светильник в ванной комнате.

Для ванной комнаты использовался светодиод Cree XM-L T6 с питанием от двух зарядок для телефонов LG.

Каждое из зарядных устройств может выдавать по заявлению производителя ток силой 0,9 А, но я обнаружил, что фактически сила тока равна 1 А. Оба источника питания соединены параллельно для получения тока силой 2 А.

При таких показателях светодиодный светильник будет вырабатывать световой поток в 700 лм при потребляемой мощности 6 Вт.

6. Светильник для кухни.
Если для прихожей и ванной комнаты не было необходимости для обеспечения определенного минимума освещенности, то на кухне это не так. Поэтому было решено использовать для кухни не один, а два последовательно соединенных светодиода Cree XM-L T6, каждый из которых имеет максимальную потребляемую мощность 9 Вт и максимальной световой поток 910 люменов.

Для эффективного охлаждения в нашем случае использовался радиатор, снятый со Slot 1 процессора Pentium 3, к которому были прикреплены оба светодиода при помощи термоклеяArcticAlumina. Хотя светодиоды Cree XM-L T6 могут потреблять ток силой 3 А, производитель для надежности работы рекомендует использовать ток силой 2 А, при котором они создают световой поток около 700 лм. В качестве источника питания использовался генерирующий 12В при токе 1.5A. После тестирования его при помощи резисторов, было обнаружено, что ток ограничен до значения в 1,8 А, что очень близко к искомому значению в 2 А.

Для предохранения радиатора и двух светодиодов использовались две пластиковых шайбы от материнской платы и два неодимовых магнита, снятых с поврежденного DVD-привода, закрепив их суперклеем и текстильной липучкой.

Ожидал, что такой светодиодный светильник будет выдавать 1200 лм, что сравнимо со световым потоком заменяемой люминесцентной лампой 23 Вт, однако было обнаружено, что на самом деле излучаемый свет даже более интенсивный, при потребляемой мощности около 12 Вт — почти половиной по сравнению со старой лампочкой.

7. Офисный светильник
Нам понадобится:

1. Светодиодные линейки 4 шт (на мощных Американских диодах CREE)
2. Подходящий драйвер (блок питания) 1 шт.
3. Металлический корпус будущего светильника.
4. Проводки, паяльник, ручной инструмент и крепеж.й светильник.

Можно использовать для изготовления корпус старого светильника

Либо использовать специальный алюминиевый профиль со стеклом. В этом случае драйвер устанавливается внутри профиля.

Устанавливаем диодные линейки 4 шт.

Делаем крепление к потолку (на тросиках) + ставим матовое стекло.

Вариант LED светильника в корпусе (от люминесцентного 2х36Вт)

Или можно все поставить в офисный светильник 600х600 мм.

Ну и в качестве бонуса рассмотрим несколько примеров декоративных светильников на основе светодиодов.

8. Декоративный настольный ночник.

Для декоративного светильника нам потребуются:
– 4 деревянных дощечки одинакового размера;
– дрель со сверлом 15 мм.;
– клей для дерева;
– морилка для дерева;
– кисть с карандашом;
– наждачная бумага;
– светодиодные свечи.
Прежде всего, необходимо дрелью проделать несколько отверстий в каждой дощечке, предварительно сделав разметку карандашом, – так мы получим своеобразный рисунок из кругов.

Наносим морилку на дерево.

С помощью клея соединяем 4 дощечки в светильник.

Проходимся наждачной бумагой по светильнику, чтобы придать ему винтажности.

Ставим внутрь светильника светодиодные свечи.

9. Светильник в восточном стиле.
В качестве плафонов для светильников, используем банки от клея пва.

Нам понадобятся:
– 2-3 банки из-под клея ПВА
– патроны, провод
– ножницы, острый нож
– горячий клеевой пистолет
– бамбуковые салфетки или соломенные потолочные плитки

Для начала надо разрезать салфетки на куски нужных размеров.

Далее острым ножом отрезать верхнюю часть банки с крышкой.

На основании банки маркером обвести патрон со светодиодом в 1 Ватт и вырезать круг ножом.

Затем при помощи горячего клеевого пистолета приклеиваем салфетки к банкам.

К пустым местам приклеиваем тесьму.

На этом этапе уже можно посмотреть, как будет светиться.

Осталось задекорировать на стыках тесьму деревянными бусинами.

В целях безопасности нужно насверлить отверстий для вентиляции. Можно побольше, их все равно не будет видно.

Вот и все, светильник готов.

10. Необычный декоративный светильник.

Изготовление светильника своими руками, было начато с нанесения предварительных эскизов на бумагу. Было желание, чтобы светильник не только был изогнут в плоскости, но и в пространстве, и имел причудливую форму 3d волны.

После того как эскиз на бумаге готов, приступаем к изготовлению светильника. Была измерена каждая труба на рисунке, и по этим размерам производилась резка труб. Чтобы получить необходимые углы, из бумаги вырезались шаблоны и крепились скотчем на трубе.

Читайте также:  Классный и оригинальный светильник на стену из кофейных фильтров своими руками

Все трубы были выложены на столе, и сделана подгонка относительно формы волны

Пропилы делались на стационарной циркулярной пиле. Таким образом получается ровные пропилы без задиров шириной 2 мм.

Теперь нужно соединить все трубы в одно целое. Главная задача сделать плавные изгибы, для этого не помешает применить шаблон (лист ДВП) на столе.

Поскольку трубы картонные, то соответственно соединять их можно при помощи клея ПВА, но я бы рекомендовал использовать клеи которые по крепче и быстрее застывают (момент, суперклей).

С обратной стороны на саморезы были привинчены деревянные планки, чтобы самодельный светильник можно было повесить на стену. И в каждой трубе были просверлены отверстия для вывода проводов от светодиодных лент.

Окраска труб производилась обычной краской в баллончике. Использовался красный цвет, поскольку стена, на которой должен быть расположен светильник, была белой, то хотелось получить некий контраст.

Краска высыхает очень быстро, по этому можно приступать к монтажу светодиодов. Главное запомните, что разрезать светодиодную ленту можно только в специально отмеченных местах. Ленту заранее необходимо разметить, чтобы ее хватило на все 12 труб.

Припаиваем к “+” контакту красные провода, а к “-” черные, чтобы в последствии не перепутать полярность.

Светодиодные полоски размещаем внутри труб и фиксируем клейкой стороной к стенке трубы, а провода выводим через заранее проделанные отверстия. Остается только параллельно соединить все провода (красные соединить с красными, а черные с черными) и подключить к блоку питания.

Теперь пришло время, чтобы повесить самодельный светильник на стенку.
Светильник готов.

Фото самодельных ламповых усилителей

PTAXA73 Senior Member Автор темы

4 года на сайте
пользователь #1851250

Доброго времени, ув.!
Открыта ветка для показа своих самодельных ламповых усилителей,схем и печатных плат.
Выкладываем фото ТОЛЬКО своих собственных ламповых усилителей.
Не выкладывайте фото из ИНТЕРНЕТА !

Всем добро пожаловать!

Zfghx Senior Member

10 лет на сайте
пользователь #167680

PTAXA73 Senior Member Автор темы

4 года на сайте
пользователь #1851250

Если только ламповые

Diffusor Junior Member

3 года на сайте
пользователь #1938398

Мощность 50+50 ватт. Искажения пока нечем замерить. На слух звучит хорошо.

PTAXA73 Senior Member Автор темы

4 года на сайте
пользователь #1851250

Душа радуется за проделанную работу!

15 лет на сайте
пользователь #26622

Diffusor Junior Member

3 года на сайте
пользователь #1938398

Корректор RIAA на 6Н23П

Двухтактный усилитель на 6П44С. Где-то у кого-то работает

Двухтактный на 6П43П с тороидальными ТВЗ

Неизвестный кот Senior Member

10 лет на сайте
пользователь #199624

PTAXA73 Senior Member Автор темы

4 года на сайте
пользователь #1851250

Двухтактный усилитель на 6П44С. Где-то у кого-то работает

Здесь как бы с точки зрения ТБ закрыть аноды чем либо!

Diffusor Junior Member

3 года на сайте
пользователь #1938398

Есть более позднее фото, где добавлены анодные колпачки из Китая и темброблок. С темброблоком купили.

Diffusor Junior Member

3 года на сайте
пользователь #1938398

Это финальное фото, таким он покинул меня. Стекло – это защита от пыли, при работе оно убирается в обязательном порядке. Добавлен темброблок.

А это будет RIAA MM корректор.

А это зачем-то делал телефонный усилитель. Хотя ими (телефонами) пользуюсь крайне редко.

Mallek Senior Member

10 лет на сайте
пользователь #186364

Настоящий помощник гитаристу – исполнителю.
Низкий(Low) и высокий (Hi) вход.Переключение – тумблером около входного разъёма.На входе только две лампы (6н1п или 6н2п или 6н23п) или ecc-83 или 12AX7.Вставив лампы необходимо переключить тумблер на задней панели.Просто и удобно и никакой пайки.Гитарист – исполнитель ищет то звучание,которое ему нравиться.
Выходной каскад выполнен на лампах 6П14П-ев (4 штуки – квартет),можно использовать и El-84 (взаимозаменяемость)Фишка в том, что даже не подготовленный, как спец в электротехнике,исполнитель – гитарист, при наличии Вольтметра,в состоянии выставить (мили вольтаж)для всех четырёх ламп, персонально.Удобно – бесспорно.Подобранные “дуэты”,”квартеты” ламп не дёшевы.
В унч имеет место только регулировка (Volume, EQ) и линейный выход.Мощность – 30 ватт RMS.
Спасибо в помощи гитаристу -Серёге.

Критику воспринимаю адекватно.

Хорошего звука – много не бывает(с) Лучшее – враг хорошего (с)

Блок питания люминисцентной лампы

Была хорошая настольная лампа с цоколем G23. Финская, железная. Проработала лет 15, лампу даже не менял, но помер БП. Он еще у нее внешний старого образца, не эпра. Кто подскажет на что его можно заменить?
Power Supply Type BL1 For PL Lamps 7/9/11W

  • Б/У

  • Группа: Модераторы
  • Сообщений: 8 178

Можно взять дроссель и засунуть его в корпус.

Можно поменять все кишки и тип лампы, так как с ЭПРА нельзя использовать лампы со встроенным стартером.

Сам я в аналогичной ситуации переделал лампу полностью на светодиоды.

  • рядовой пользователь

  • Группа: Пользователи
  • Сообщений: 159

Jeniver (28.11.2015 – 14:02) :

Стругацкие «Гадкие лебеди»

  • почтенный теронозавр

  • Группа: Пользователи
  • Сообщений: 3 151

Jeniver (28.11.2015 – 14:02) :

Можно взять дроссель и засунуть его в корпус.

  • Б/У

  • Группа: Модераторы
  • Сообщений: 8 178

andrey2147 (05.12.2015 – 11:05) :

Ну, автор же скорбит о погибшей лампе? Там был дроссель.

Коаксиальная криптоловая печь. Настольная плавильня 3000 градусов.

Криптоловые печи, довольно широко применявшиеся в первой половине прошлого столетия, в настоящее время почти

неизвестны экспериментаторам. Тем не менее, такие печи – очень простой, быстрый и эффективный способ получения высоких (1500-2000 градусов и выше) температур в лабораторных условиях, если по каким-то причинам нет возможности использовать современное специальное оборудование (индукционные, дуговые или другие высокотемпературные печи). В данной статье в очень краткой форме (фотографии с минимальными комментариями) показана конструкция и порядок сборки коаксиальной криптоловой печи. Особенность этой печи в том, что ток течет радиально, концентрируясь около центрального цилиндрического графитового электрода. Этот электрод выполняет и роль тигля. Внешний коаксиальный электрод большего диаметра изготовлен из стали и играет дополнительную роль – боковой стенки печи. Помимо замыкания тока, внешние слои криптола, примыкающие к внешнему электроду, служат теплоизоляцией. При достаточно большом отношении радиусов внешнего и внутреннего электродов перегревная неустойчивость не возникает, высокотемпературная зона окружает только внутренний электрод, и печь работает устойчиво.

Когда у экспериментатора возникают разовые задачи, связанные с нагревом до температур выше 1100-1200 градусов, начинаются

проблемы. Промышленные печи на такой температурный диапазон резко возрастают в цене по сравнению со штатными муфельными

печами, а изготовление даже небольшой печи собственными силами «упирается» в проблему поиска подходящих материалов. Печи

сопротивления с металлическими нагревателями требуют применения либо дорогих благородных металлов (например, платины), либо использования инертной или восстановительной атмосферы. Если же требуемые температуры превышают 1500 градусов, то практически единственным приемлемым вариантом является применение графитовых нагревателей с какой-нибудь подходящей защитой графита от окисления атмосферным воздухом. Абсолютная герметизация графита в таких печах обычно не нужна. Достаточно исключить поступление свежего воздуха, содержащего много кислорода, непосредственно к нагревательному элементу. При этом удается достичь ресурса графитового нагревателя от нескольких десятков до сотни часов, в зависимости от рабочей температуры. Такой ресурс вполне удовлетворителен для единичных лабораторных экспериментов.

Как-то в ходе работы над одним изобретением нам понадобилось плавильное устройство с широким спектром нагрева, которым было

бы удобно пользоваться в домашних условиях. Перепробовали разные варианты газовых и электроспиральных нагревателей и убедились, что ни те ни другие не отвечают поставленной задаче: они получались либо громоздкими и неудобными в пользовании, либо не давали достаточного нагрева. Вот, думаем, была бы электродуговая плавка, но действующая в более замедленном темпе !

Так пришла в голову идея использовать для этой цели углеграфитовый порошок, который засыпается между двумя рабочими

углеграфитовыми электродами, к которым подводится напряжение питания в пределах 25—50 В от достаточно мощного (типа сварочного) трансформатора. За счет имеющегося омического сопротивления в порошке графита происходит постепенный интенсивный нагрев. Температура в такой электропечи может доходить до 3000 °С, что дает возможность плавить почти все металлы (малыми порциями). Несмотря на столь внушительный нагрев внутри печи, наружный слой угле-графитового порошка остается темноватого или красноватого цвета, так что ослепляющего свечения, как это бывает при электродуговой сварке, от печи не исходит. Время разогрева печи варьируется в интервале 3—5 минут, что позволяет легко контролировать и управлять процессом плавки, включая-отключая от сети трансформатор. Так как металла плавится немного, то он особо не расплывается внутри печи и порошок достаточно хорошо держит его форму.

Читайте также:  Доработка электрошашлычницы

Электропечь делается из простых и вполне доступных материалов: графита, слюды и асбестовой плитки. В связи с тем, что асбест по

медицинским соображениям запрещен и становится редкостью, его можно заменить кафельной или цементной плиткой.

Размеры печи не являются строго определенными. Все зависит от мощности имеющейся электросети и выходного напряжения трансформатора. Чем больше выходное напряжение, тем шире должно быть расстояние между электродами. При тех размерах электропечи, что указаны на чертеже, достаточно подавать на электроды 25—30 вольт: печь разогревается в плавном режиме, но довольно интенсивно. В случае применения сварочного трансформатора промышленного образца, который обычно выдает 50—60 вольт, расстояние между электродами надо увеличить примерно вдвое, до 150—200 мм. В объеме печи, приведенном на чертеже (100х65х50 мм), можно расплавить 60—80 граммов, например, серебра, что считается уже неплохим результатом.

В качестве электродов для печи подходят щетки от мощного электромотора. Они удобны тем, что имеют хороший токоподводящий гибкий провод. Если нет возможности достать такие электроды, их несложно выпилить самому из куска графита, например, от использованного стержня-электрода, применяемого в дугоплавильных печах. В самодельном электроде надо лишь просверлить сбоку два отверстия диаметром 5—6 мм, вставить в них многожильный медный провод толщиной 5 мм и для уплотнения осторожно забить сюда еще подходящий гвоздь. На внутренней стороне электродов делается сетчатая насечка напильником — для улучшения контакта с порошком графита.

В качестве внутреннего футеровочного слоя стенок печи применяется слюда: благодаря своей слоистости она служит хорошим

теплоизолирующим экраном. Наружные стенки дополнительно укрепляются асбестовой или цементной плиткой толщиной 5—10 мм. Для

предельной простоты сборки стенки обвязываются мягкой медной или вязальной проволокой. Изолирующей подставкой для печи служит обычный кирпич; под низ укладывается еще эмалированный металлический поддон с бортиками.

Углеграфитовый порошок можно получать из отслуживших стержней с помощью грубого напильника или многолезвийной ножовки по металлу. Надо учесть, что в процессе плавки порошок графита все же постепенно выгорает и его надо периодически подсыпать.

Электроплавильная печь: 1 — порошок углеграфита; 2 — место плавки металла; 3 — провод-обвязка корпуса печи; 4 — футеровка из слюды; 5 — плитка асбестовая; 6 — электрод углеграфитовый; 7 — провод токоподводящий.

Управлять энергетикой данной печи можно с помощью простой электронной схемы:

Только оябязательно соблюдайте правила техники безопасности при питании напряжением больше 50 В, поскольку все элементы конструкции находятся под напряжением.

Понижающий трансформатор на 25 вольт. Сетевая обмотка содержит 620 витков медного эмалированного проводя диаметром 1 мм.

Понижающая обмотка содержит 70 витков провода прямоугольного сечения 4,2х2,8 мм в стекловолоконной изоляции.

Собранная печь подключается к трансформатору достаточно толстыми медными проводами (7—8 мм) с обязательной наружной изоляцией, чтобы избежать во время работы случайного короткого замыкания.

Готовую к работе печь вначале как следует прогревают, чтобы дать выгореть органическим включениям (обеспечив при этом соответствующую вентиляцию в помещении). В дальнейшем печь работает практически без выделения копоти и гари.

Плавку металлов проводят по следующей схеме. Вначале с помощью небольшой лопатки в середине печи в порошке делают лунку, кладут в нее первую порцию металла и закапывают. Если используемый лом разной величины, то сначала помещают самый крупный кусочек, и только после его расплавления добавляют мелкие части.

Чтобы убедиться, что металл расплавился, печь можно слегка покачать — поверхность порошка в этом случае также начинает

колыхаться.После остывания металла его переворачивают и снова расплавляют. Так повторяется несколько раз, пока заготовка не примет более-менее шаровидную форму, свидетельствующую о качестве расплава.

Когда надо плавить мелкую стружку или опилки простых металлов, их засыпают прямо в лунку и плавят как обычно. Более драгоценный металл, с целью его сохранности, помещают в стеклянную ампулу из-под лекарства и плавят вместе с ней. Образовавшаяся у расплава корочка из стекла легко обсыпается при охлаждении в воде.

Легкоплавкие металлы — олово, алюминий и тому подобное — лучше помещать в железную чашечку. ‘ Для получения сплавов

сначала кладут в порошок более тугоплавкий металл, а после его расплавления вводят легкоплавкий. Например: медь + олово; медь + алюминий.

В электропечи можно плавить олово, алюминий, железо, никель, медь, серебро, золото, палладий. После плавки полученные

заготовки подлежат ковке. Их надо расклепывать на наковальне не спеша особенно вначале, небольшим молотком. И как можно чаще нагревать заготовку на газовой плите докрасна, затем остужать в холодной воде и снова расклепывать до нужных размеров.

Категорически нельзя плавить магний, свинец, кадмий, цинк и цинкосодержащие сплавы (цинковая латунь, мельхиор), а также серебряные контакты от различных типов реле, приборов, пускателей — в них содержится до 50% кадмия, который выгорает, образуя желтый ядовитый дым.

Если нет возможности приобрести мощный трансформатор, то его можно заменить составным. Для этого надо взять несколько менее

мощных однотипных трансформаторов и параллельно соединить их выходные обмотки (при условии, что все они рассчитаны на

одинаковое напряжение). Возможен и самодельный трансформатор. Он собирается из Г-образных пермалоевых пластин с внутренним сечением 60х32 мм. Его сетевая обмотка наматывается эмалированным проводом толщиной 1 мм и содержит 620 витков. Понижающая обмотка наматывается проводом прямоугольного сечения 4,2х2,8 мм и содержит 70 витков.

Что касается техники безопасности при работе с этой печью, то надо помнить, что сварочный трансформатор требует крайне осторожного обращения. Нельзя допустить, чтобы произошло короткое замыкание в проводах или между электродами в самой печи. Выключатель сети трансформатора должен располагаться рядом, чтобы в любую секунду его было удобно отключить. Нельзя также ни на минуту оставлять работающую печь без присмотра. Рядом всегда должна находиться емкость с водой, где остужаются горячие заготовки.

Самодельный настольный сверлильно-фрезерный станок по металлу

Показать панель управления

  • Опубликовано: 3 апр 2018 veröffentlicht

Комментарии • 26

В пору укосины ставить,его гнет при сверлении.

Молодец! А чертежи есть?

Александр Прибыльский к сожалению нет, чистая импровизация!

. сэр ! а какова мощность элдвигателя !

Владимир Лапшин точных данных нет, думаю около 300Вт

Здравствуйте. А можно поподробнее узнать про систему рычагов? или показать. Заранее благодарен.

Боцман добрый , спасибо!

Благодарю! Отличное решение . взамен рейки.

Боцман добрый привет, вот есть видео. clip-share.net/video/dxRiOLI5E2g/видео.html

Андрюха ты Монстр! Ты ещё про меня говориш, а сам то ваяеш без продыху ! Молодчага:)

Это какой уже по счёту ?(С нуля изготовленный) На моей памяти минимум третий!

G.I customs спасибо братан, делаю потихоньку)

Угловой редуктор из болгарки на ось Z, натяжитель ремня, подпружиненный ролик. навесить на тот же шток кранштейна.

угловой редуктор хотел с передачей 1к1, у болгарки думаю раза в три понизит обороты, крутить устанешь) но мысля не плохая, спасибо)

прям как заводской станок.молодец автор!

@Agrompapas какая марка мотора?

денис щербаков спасибо!

Привет! Супер! Молодчага!Натяжник предложу такой,спереди на голове пластину с резьбой закрепи.Так что бы болт по резьбе проходил через пластину и упирался в двигатель или его крепление.Т.е.крутишь болт и натягиваешь ремень.Ну тонкости сам додумай и красоту.
У меня тоже есть вопрос. Начинаю собирать настольный фрезер,но упёрся в пиноль(сверлильная ручка со шпинделем),подскажи пожалуйста как у тебя продумано.Тоже хотелось бы рычажного типа,чтобы не заморачиваться с рейкой.Может видео снимешь?

leggo55 , хорошо, сниму маленькое видео

Андрюх большущий лайк?
Чего тебе большого фрезера не хватает????
Шутю конечно, это же чистое творчество! Отлично, буду ждать дальнейших движений по этому станочку!

MrJonny247 спасибо Жень! Люблю маленькие станочки)

Как сверлилка для железа и дерева пойдёт, как фрезер по дереву пойдёт, на остальное жёсткости 100% не будет! Большими свёрлами тоже (смотря конечно что считать большими). Но всё равно гут.

Ссылка на основную публикацию